skip to main content


Search for: All records

Award ID contains: 2012152

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We investigate in this work two different types of instabilities that set limits on the rotation rates of neutron (compact) stars. The first one is that caused by rotation at the Kepler frequency, at which mass shedding at the star's equator sets in. The second limit is set by instabilities driven by the growth of gravitational radiation‐reaction (GRR) driven‐modes of order, which are moderated by shear and bulk viscosity. The calculations are performed for two relativistic models for the nuclear equation of state, DD2 and ACB4. The latter accounts for a phase transition that gives rise to the existence of so‐called mass‐twin compact stars. Our results confirm that the stable rotation periods of cold neutron stars are determined by themodes and that these modes are excited at rotation periods between 1 and 1.4 ms (20–30% above the Kepler periods of these stars). The situation is reversed in hot neutron stars where bulk viscosity damps the GRR modes, pushing the excitation period of the‐mode instability to values below the Kepler period. For cold mass‐twin compact stars, we find that theinstability sets in at rotation periods between 0.8 and 1 ms (25–30% below the Kepler period). This feature may allow one to distinguish conventional neutron stars from their possibly existing mass‐twin counterparts observationally, provided the‐mode instability, which is expected to compete with the‐mode instability, sets the limit on stable rotation of compact stars.

     
    more » « less
  2. Abstract

    Ever since the observation of peculiar overluminous Type Ia supernovae (SNeIa), exploring possible violations of the canonical Chandrasekhar mass limit (CML) has become a pressing research area of modern astrophysics. Since its first detection in 2003, more than a dozen of peculiar overluminous SNeIa has been detected, but the true nature of the underlying progenitors is still under dispute. Furthermore there are also underluminous SNeIa whose progenitor masses appear to be well below the CML (sub-Chandrasekhar progenitors). These observations call into question how sacrosanct the CML is. We have shown recently in Paper I that the presence of a strong magnetic field, the anisotropy of dense matter, as well as the orientation of the magnetic field itself significantly influence the properties of neutron and quark stars. Here, we study these effects for white dwarfs (WDs), showing that their properties are also severely impacted. Most importantly, we arrive at a variety of mass–radius relations of WDs that accommodate sub- to super-Chandrasekhar mass limits. This urges caution when using WDs associated with SNeIa as standard candles.

     
    more » « less
  3. Free, publicly-accessible full text available July 1, 2024
  4. Strange stars ought to exist in the universe according to the strange quark matter hypothesis, which states that matter made of roughly equal numbers of up, down, and strange quarks could be the true ground state of baryonic matter rather than ordinary atomic nuclei. Theoretical models of strange quark matter, such as the standard MIT bag model, the density-dependent quark mass model, or the quasi-particle model, however, appear to be unable to reproduce some of the properties (masses, radii, and tidal deformabilities) of recently observed compact stars. This is different if alternative gravity theory (e.g., non-Newtonian gravity) or dark matter (e.g., mirror dark matter) are considered, which resolve these issues. The possible existence of strange stars could thus provide a clue to new physics, as discussed in this review. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  5. Abstract Neutron stars provide a unique laboratory for studying matter at extreme pressures and densities. While there is no direct way to explore their interior structure, X-rays emitted from these stars can indirectly provide clues to the equation of state (EOS) of the superdense nuclear matter through the inference of the star's mass and radius. However, inference of EOS directly from a star's X-ray spectra is extremely challenging and is complicated by systematic uncertainties. The current state of the art is to use simulation-based likelihoods in a piece-wise method which relies on certain theoretical assumptions and simplifications about the uncertainties. It first infers the star's mass and radius to reduce the dimensionality of the problem, and from those quantities infer the EOS. We demonstrate a series of enhancements to the state of the art, in terms of realistic uncertainty quantification and a path towards circumventing the need for theoretical assumptions to infer physical properties with machine learning. We also demonstrate novel inference of the EOS directly from the high-dimensional spectra of observed stars, avoiding the intermediate mass-radius step. Our network is conditioned on the sources of uncertainty of each star, allowing for natural and complete propagation of uncertainties to the EOS. 
    more » « less
  6. R. Ruffini and G. Vereshchagin (Ed.)
    The equilibrium configuration of white dwarfs composed of anisotropic fluid distribution in the presence of a strong magnetic field is investigated in this work. By considering a functional form of the anisotropic stress and magnetic field profile, some physical properties of magnetized white dwarfs, such as mass, radius, density, radial and tangential pressures, are derived; their dependency on the anisotropy and central magnetic field is also explored. We show that the orientations of the magnetic field along the radial direction or orthogonal to the radial direction influence the stellar structure and physical properties of white dwarfs significantly. Importantly, we show that ignoring anisotropy governed by the fluid due to its high density in the presence of a strong magnetic field would destabilize the star. Through this work, we can explain the highly massive progenitor for peculiar over-luminous type Ia supernovae, and low massive progenitor for under-luminous type Ia supernovae, which poses a question of considering 1.4 solar mass white dwarf to be related to the standard candle. 
    more » « less
  7. It is generally accepted that the limit on the stable rotation of neutron stars is set by gravitational-radiation reaction (GRR) driven instabilities, which cause the stars to emit gravitational waves that carry angular momentum away from them. The instability modes are moderated by the shear viscosity and the bulk viscosity of neutron star matter. Among the GRR instabilities, the f-mode instability plays a historically predominant role. In this work, we determine the instability periods of this mode for three different relativistic models for the nuclear equation of state (EoS) named DD2, ACB4, and GM1L. The ACB4 model for the EoS accounts for a strong first-order phase transition that predicts a new branch of compact objects known as mass-twin stars. DD2 and GM1L are relativistic mean field (RMF) models that describe the meson-baryon coupling constants to be dependent on the local baryon number density. Our results show that the f-mode instability associated with m=2 sets the limit of stable rotation for cold neutron stars (T≲1010 K) with masses between 1M⊙ and 2M⊙. This mode is excited at rotation periods between 1 and 1.4 ms (∼20% to ∼40% higher than the Kepler periods of these stars). For cold hypothetical mass-twin compact stars with masses between 1.96M⊙ and 2.10M⊙, the m=2 instability sets in at rotational stellar periods between 0.8 and 1 millisecond (i.e., ∼25% to ∼30% above the Kepler period). 
    more » « less
  8. Abstract In this paper, we explore the properties of proto-neutron star matter. The relativistic finite-temperature Green function formalism is used to derive the equations which determine the properties of such matter. The calculations are performed for the relativistic non-linear mean-filed theory, where different combinations of lepton number and entropy have been investigated. All particles of the baryon octet as well as all electrically charged states of the Δ isobar have been included in the calculations. The presence of all these particles is shown to be extremely temperature (entropy) dependent, which should have important consequences for the evolution of proto-neutron stars to neutron stars as well as the behavior of neutron stars in compact star mergers. 
    more » « less