Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            IntroductionThis paper investigates the impact of differential rotation on the bulk properties and onset of rotational instabilities in neutron stars at finite temperatures up to 50 MeV. MethodsUtilizing the relativistic Brueckner-Hartree-Fock (RBHF) formalism in full Dirac space, the study constructs equation of state (EOS) models for hot neutron star matter, including conditions relevant for high temperatures. These finite-temperature EOS models are applied to compute the bulk properties of differentially rotating neutron stars with varying structural deformations. ResultsThe findings demonstrate that the stability of these stars against bar-mode deformation, a key rotational instability, is only weakly dependent on temperature. Differential rotation significantly affects the maximum mass and radius of neutron stars, and the threshold for the onset of bar-mode instability shows minimal sensitivity to temperature changes within the examined range. DiscussionThese findings are crucial for interpreting observational data from neutron star mergers and other high-energy astrophysical events. The research underscores the necessity of incorporating differential rotation and finite temperature effects in neutron star models to predict their properties and stability accurately.more » « less
- 
            Abstract This study investigates the properties of symmetric and asymmetric nuclear matter using the relativistic Brueckner–Hartree–Fock formalism, examining both zero and finite temperatures up to 70 MeV. Employing the full Dirac space, we incorporate three Bonn potentials (A, B, and C), which account for meson masses, coupling strengths, cutoff parameters, and form factors. The calculated properties of asymmetric nuclear matter form the basis for constructing equation-of-state (EOS) models tailored for neutron stars. These models, in turn, enable the computation of bulk properties for nonrotating, uniformly rotating, and differentially rotating neutron stars. Notably, the EOS models studied in this paper are sufficiently versatile to accommodate the mass of the most massive neutron star ever detected, PSR J0952–0607, estimated to be 2.35 ± 0.17M⊙. Furthermore, they yield masses and radii for PSR J0030+451 that align with the confidence intervals established for this pulsar.more » « less
- 
            Abstract Neutron stars provide a unique opportunity to study strongly interacting matter under extreme density conditions. The intricacies of matter inside neutron stars and their equation of state are not directly visible, but determine bulk properties, such as mass and radius, which affect the star's thermal X-ray emissions. However, the telescope spectra of these emissions are also affected by the stellar distance, hydrogen column, and effective surface temperature, which are not always well-constrained. Uncertainties on these nuisance parameters must be accounted for when making a robust estimation of the equation of state. In this study, we develop a novel methodology that, for the first time, can infer the full posterior distribution of both the equation of state and nuisance parameters directly from telescope observations. This method relies on the use of neural likelihood estimation, in which normalizing flows use samples of simulated telescope data to learn the likelihood of the neutron star spectra as a function of these parameters, coupled with Hamiltonian Monte Carlo methods to efficiently sample from the corresponding posterior distribution. Our approach surpasses the accuracy of previous methods, improves the interpretability of the results by providing access to the full posterior distribution, and naturally scales to a growing number of neutron star observations expected in the coming years.more » « less
- 
            Abstract Based on an analytically continued Riemannian foliated quantum gravity super-Hamiltonian, known as branch cut quantum gravity (BCQG) we propose a novel approach to investigating the effects of noncommutative geometry on a minisuperspace of variables, influencing the acceleration behavior of the Universe’s wave function and the cosmic scale factor. Noncommutativity is introduced through a deformation of the conventional Poisson algebra, enhanced with a symplectic metric. The resulting symplectic manifold provides a natural setting that enables an isomorphism between canonically conjugate dual vector spaces, spanning the BCQG cosmic scale factor and its complementary quantum counterpart. Using this formulation, we describe the dynamic evolution of the Universe’s wave function, the cosmic scale factor, and its complementary quantum image. Our results strongly suggest that the noncommutative algebra induces late-time accelerated growth of the wave function, the Universe’s scale factor, and its complementary quantum counterpart, offering a new perspective on explaining the accelerating cosmic expansion rate and the inflationary period. In contrast to the inflationary model, where inflation requires a remarkably fine-tuned set of initial conditions in a patch of the Universe, analytically continued non-commutative foliated quantum gravity captures short and long scales, driving the evolutionary dynamics of the Universe through a reconfiguration of the primordial cosmic content of matter and energy. This reconfiguration is encapsulated into a quantum field potential, which leads to the generation of relic gravitational waves, a topic for future investigation. Graphical representations and contour plots indicate a characteristic torsion (or twist) deformation of spacetime geometry. This result introduces new speculative elements regarding the reconfiguration of matter and energy as a driver of spacetime torsion deformation, generating relic gravitational waves and serving as an alternative topological mechanism for the Universe’s acceleration. However, these assumptions require further investigation.more » « less
- 
            Abstract This article focuses on a recently developed formulation based on the noncommutative branch‐cut cosmology, the Wheeler‐DeWitt (WdW) equation, the Hořava–Lifshitz quantum gravity, chaotic and the coupling of the corresponding Lagrangian approach with the inflaton scalar field. Assuming a mini‐superspace of variables obeying the noncommutative Poisson algebra, we examine the impact of the inflaton scalar field on the evolutionary dynamics of the branch‐cut Universe scale factor, characterized by the dimensionless helix‐like function . This scale factor characterizes a Riemannian foliated spacetime that topologically overcomes the primordial singularities. We take the Hořava–Lifshitz action modeled by branch‐cut quantum gravity as our starting point, which depends on the scalar curvature of the branched Universe and its derivatives and which preserves the diffeomorphism property of General Relativity, maintaining compatibility with the Arnowitt–Deser–Misner formalism. We then investigate the sensitivity of the scale factor of the branch‐cut Universe's dynamics.more » « less
- 
            Abstract This article focuses on the implications of a noncommutative formulation of branch‐cut quantum gravity. Based on a mini‐superspace structure that obeys the noncommutative Poisson algebra, combined with the Wheeler–DeWitt equation and Hořava–Lifshitz quantum gravity, we explore the impact of a scalar field of the inflaton‐type in the evolution of the Universe's wave function. Taking as a starting point the Hořava–Lifshitz action, which depends on the scalar curvature of the branched Universe and its derivatives, the corresponding wave equations are derived and solved. The noncommutative quantum gravity approach adopted preserves the diffeomorphism property of General Relativity, maintaining compatibility with the Arnowitt–Deser–Misner Formalism. In this work we delve deeper into a mini‐superspace of noncommutative variables, incorporating scalar inflaton fields and exploring inflationary models, particularly chaotic and nonchaotic scenarios. We obtained solutions to the wave equations without resorting to numerical approximations. The results indicate that the noncommutative algebraic space captures low and high spacetime scales, driving the exponential acceleration of the Universe.more » « less
- 
            Abstract Neutron stars may experience differential rotation on short, dynamical timescales following extreme astrophysical events like binary neutron star mergers. In this work, the masses and radii of differentially rotating neutron star models are computed. We employ a set of equations of states for dense hypernuclear and ‐admixed‐hypernuclear matter obtained within the framework of CDF theory in the relativistic Hartree‐Fock (RHF) approximation. Results are shown for varying meson‐ couplings, or equivalently the ‐potential in nuclear matter. A comparison of our results with those obtained for nonrotating stars shows that the maximum mass difference between differentially rotating and static stars is independent of the underlying particle composition of the star. We further find that the decrease in the radii and increase in the maximum masses of stellar models when ‐isobars are added to hyperonuclear matter (as initially observed for static and uniformly rotating stars) persist also in the case of differentially rotating neutron stars.more » « less
- 
            Abstract This paper focuses on the implications of a commutative formulation that integrates branch‐cutting cosmology, the Wheeler–DeWitt equation, and Hořava–Lifshitz quantum gravity. Building on a mini‐superspace structure, we explore the impact of an inflaton‐type scalar field on the wave function of the Universe. Specifically analyzing the dynamical solutions of branch‐cut gravity within a mini‐superspace framework, we emphasize the scalar field's influence on the evolution of the evolution of the wave function of the Universe. Our research unveils a helix‐like function that characterizes a topologically foliated spacetime structure. The starting point is the Hořava–Lifshitz action, which depends on the scalar curvature of the branched Universe and its derivatives, with running coupling constants denoted as . The corresponding wave equations are derived and are resolved. The commutative quantum gravity approach preserves the diffeomorphism property of General Relativity, maintaining compatibility with the Arnowitt–Deser–Misner formalism. Additionally, we delve into a mini‐superspace of variables, incorporating scalar‐inflaton fields and exploring inflationary models, particularly chaotic and nonchaotic scenarios. We obtained solutions for the wave equations without recurring to numerical approximations.more » « less
- 
            Abstract This article focuses on the implications of the recently developed commutative formulation based on branch‐cutting cosmology, the Wheeler–DeWitt equation, and Hořava–Lifshitz quantum gravity. Assuming a mini‐superspace of variables, we explore the impact of an inflaton‐type scalar field on the dynamical equations that describe the trajectories evolution of the scale factor of the Universe, characterized by the dimensionless helix‐like function . This scale factor characterizes a Riemannian foliated spacetime that topologically overcomes the big bang and big crunch singularities. Taking the Hořava–Lifshitz action as our starting point, which depends on the scalar curvature of the branched Universe and its derivatives, with running coupling constants denoted as , the commutative quantum gravity approach preserves the diffeomorphism property of General Relativity, maintaining compatibility with the Arnowitt–Deser–Misner formalism. We investigate both chaotic and nonchaotic inflationary scenarios, demonstrating the sensitivity of the branch‐cut Universe's dynamics to initial conditions and parameterizations of primordial matter content. The results suggest a continuous connection of Riemann surfaces, overcoming primordial singularities and exhibiting diverse evolutionary behaviors, from big crunch to moderate acceleration.more » « less
- 
            Abstract We investigate in this work two different types of instabilities that set limits on the rotation rates of neutron (compact) stars. The first one is that caused by rotation at the Kepler frequency, at which mass shedding at the star's equator sets in. The second limit is set by instabilities driven by the growth of gravitational radiation‐reaction (GRR) driven‐modes of order, which are moderated by shear and bulk viscosity. The calculations are performed for two relativistic models for the nuclear equation of state, DD2 and ACB4. The latter accounts for a phase transition that gives rise to the existence of so‐called mass‐twin compact stars. Our results confirm that the stable rotation periods of cold neutron stars are determined by themodes and that these modes are excited at rotation periods between 1 and 1.4 ms (20–30% above the Kepler periods of these stars). The situation is reversed in hot neutron stars where bulk viscosity damps the GRR modes, pushing the excitation period of the‐mode instability to values below the Kepler period. For cold mass‐twin compact stars, we find that theinstability sets in at rotation periods between 0.8 and 1 ms (25–30% below the Kepler period). This feature may allow one to distinguish conventional neutron stars from their possibly existing mass‐twin counterparts observationally, provided the‐mode instability, which is expected to compete with the‐mode instability, sets the limit on stable rotation of compact stars.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
