skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Prediction of shear strength and behavior of RC beams strengthened with externally bonded FRP sheets using machine learning techniques
e. This paper presents the use Machine Learning (ML) techniques to study the behavior of shear-deficient reinforced concrete (RC) beams strengthened in shear with side-bonded and U-wrapped fiber-reinforced polymers (FRP) laminates. An extensive database consisting of 120 tested specimen and 15 parameters was collected. The resilient back-propagating neural network (RBPNN) was used as a regression tool and the recursive feature elimination (RFE) algorithm and neural interpretation diagram (NID) were employed within the validated RBPNN to identify the parameters that greatly influence the prediction of FRP shear capacity. The results indicated that the RBPNN with the selected parameters was capable of predicting the FRP shear capacity more accurately (r^2 = 0.885; RMSE = 8.1 kN) than that of the RBPNN with the original 15 parameters (r^2 = 0.668; RMSE = 16.6 kN). The model also outperformed previously established standard predictions of ACI 440.R-17, fib14 and CNRDT200. A comprehensive parametric study was conducted and it concluded that the implementation of RBPNN with RFE and NID, separately, is a viable tool for assessing the strength and behavior of FRP in shear strengthened beams.  more » « less
Award ID(s):
1633608
PAR ID:
10341139
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Composite structures
Volume:
234
Issue:
111698
ISSN:
0263-8223
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fiber reinforced polymer (FRP) waste is becoming an environmental concern due to the widespread use and non-biodegradable nature of FRP composites. Cutting FRP waste into discrete reinforce-ments (referred to as “needles” hereafter) as coarse aggregate in concrete has been suggested as a possible solution to FRP waste recycling. It has previously been observed in small specimens that FRP needles increase the tensile strength and energy absorption capacity of concrete. This paper presents an experimental investiga-tion into the effect of GFRP needles as coarse aggregate partial replacement in concrete on shear behavior of full-scale reinforced concrete (RC) beams. A total of 10 RC beams without steel stirrups in the critical zone were tested under four-point bending. The volume replacement ratio of the coarse aggregate and the surface type of GFRP needles were chosen as the test parameters. GFRP needles, with either smooth or helically wrapped surfaces, were added to the concrete mix to replace 5% or 10% of coarse aggregate by volume, respectively. All test beams failed in shear in a brittle manner with the ductility being slightly enhanced by the partial replace-ment of coarse aggregate using GFRP needles. An enhancement of 8%-10% in the load carrying capacity was observed in beams with helically wrapped needles, while beams with smooth needles showed a reduction in the load carrying capacity. 
    more » « less
  2. An accurate quantification of the displacement capacity of a reinforced masonry shear-wall system is of critical importance to seismic design because it has a direct implication on the seismic force modification factor, which is the R factor in ASCE 7. In spite of the shear capacity design requirement in TMS 402, special reinforced masonry walls within a building system could still develop shear-dominated behavior, which is perceived to be far more brittle than flexural behavior. These walls have a low shear-span ratio either because of the wall geometry (i.e., a low height-to-length ratio) or the coupling forces introduced by the horizontal diaphragms, which are often ignored in design. Although shear-dominated walls appeared to be very brittle in quasi-static tests conducted on single planar wall segments, reinforced masonry structures survived major ground shaking well in past earthquakes. This could be partly attributed to the beneficial influence of wall flanges as well as the over-strength of the system. Flanged walls are common in masonry buildings, but their behavior is not well understood because of the lack of laboratory test data. Furthermore, other walls or columns that are present in the structural system to carry gravity loads could enhance the lateral resistance of the shear walls and the displacement capacity of the system by providing axial restraints as well as alternative load paths for gravity loads. A research project is being carried out with shake-table tests to investigate the displacement capacity of shear-dominated reinforced masonry wall systems. This paper presents results of the first shake-table test conducted in this project on a full-scale single-story coupled T-wall system. The structure was tested to a drift ratio exceeding 15% without collapse. 
    more » « less
  3. An accurate quantification of the displacement capacity of a reinforced masonry shear-wall system is of critical importance to seismic design because it has a direct implication on the seismic force modification factor, which is the R factor in ASCE 7. In spite of the shear capacity design requirement in TMS 402, special reinforced masonry walls within a building system could still develop shear-dominated behavior, which is perceived to be far more brittle than flexural behavior. These walls have a low shear-span ratio either because of the wall geometry (i.e., a low height-to-length ratio) or the coupling forces introduced by the horizontal diaphragms, which are often ignored in design. Although shear-dominated walls appeared to be very brittle in quasi-static tests conducted on single planar wall segments, reinforced masonry structures survived major ground shaking well in past earthquakes. This could be partly attributed to the beneficial influence of wall flanges as well as the over-strength of the system. Flanged walls are common in masonry buildings, but their behavior is not well understood because of the lack of laboratory test data. Furthermore, other walls or columns that are present in the structural system to carry gravity loads could enhance the lateral resistance of the shear walls and the displacement capacity of the system by providing axial restraints as well as alternative load paths for gravity loads. A research project is being carried out with shake-table tests to investigate the displacement capacity of shear-dominated reinforced masonry wall systems. This paper presents results of the first shake-table test conducted in this project on a full-scale single-story coupled T-wall system. The structure was tested to a drift ratio exceeding 15% without collapse. 
    more » « less
  4. An accurate quantification of the displacement capacity of a reinforced masonry shear-wall system is of critical importance to seismic design because it has a direct implication on the seismic force modification factor, which is the R factor in ASCE 7. In spite of the shear capacity design requirement in TMS 402, special reinforced masonry walls within a building system could still develop shear-dominated behavior, which is perceived to be far more brittle than flexural behavior. These walls have a low shear-span ratio either because of the wall geometry (i.e., a low height-to-length ratio) or the coupling forces introduced by the horizontal diaphragms, which are often ignored in design. Although shear-dominated walls appeared to be very brittle in quasi-static tests conducted on single planar wall segments, reinforced masonry structures survived major ground shaking well in past earthquakes. This could be partly attributed to the beneficial influence of wall flanges as well as the over-strength of the system. Flanged walls are common in masonry buildings, but their behavior is not well understood because of the lack of laboratory test data. Furthermore, other walls or columns that are present in the structural system to carry gravity loads could enhance the lateral resistance of the shear walls and the displacement capacity of the system by providing axial restraints as well as alternative load paths for gravity loads. A research project is being carried out with shake-table tests to investigate the displacement capacity of shear-dominated reinforced masonry wall systems. This paper presents results of the first shake-table test conducted in this project on a full-scale single-story coupled T-wall system. The structure was tested to a drift ratio exceeding 15% without collapse. 
    more » « less
  5. Glass-reinforced composite columns (GRCCs) may provide an economical alternative to conventional construction materials due to the superior cost to strength provided by bulk glass. Prior to this study, no GRCCs had been physically tested, having previously relied on simulation to predict the behavior of the columns. This study utilizes polyurethane resin bonds in place of sizing agents for adherence between materials, a key requirement for the development of the structural system of the columns. The unreinforced control column failed at a load of 11.2 kN while the maximum GRCC load was 30.8 kN. This indicates that glass can be loaded to 123 MPa before the onset of delamination failure of the GRCCs. Maximum shear stress of 53 MPa was reached, exceeding the 11 MPa required for practical GRCCs. Buckling of the columns occurred at 30.8 kN, below the theoretical maximum of 64.4 kN. Through gradual delamination, the column slowly transferred to an unbonded condition, causing buckling failure. Delamination is unlikely to occur in practical GRCCs due to the lower required shear strengths. 
    more » « less