skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Isospectral Twirling and Quantum Chaos
We show that the most important measures of quantum chaos, such as frame potentials, scrambling, Loschmidt echo and out-of-time-order correlators (OTOCs), can be described by the unified framework of the isospectral twirling, namely the Haar average of a k-fold unitary channel. We show that such measures can then always be cast in the form of an expectation value of the isospectral twirling. In literature, quantum chaos is investigated sometimes through the spectrum and some other times through the eigenvectors of the Hamiltonian generating the dynamics. We show that thanks to this technique, we can interpolate smoothly between integrable Hamiltonians and quantum chaotic Hamiltonians. The isospectral twirling of Hamiltonians with eigenvector stabilizer states does not possess chaotic features, unlike those Hamiltonians whose eigenvectors are taken from the Haar measure. As an example, OTOCs obtained with Clifford resources decay to higher values compared with universal resources. By doping Hamiltonians with non-Clifford resources, we show a crossover in the OTOC behavior between a class of integrable models and quantum chaos. Moreover, exploiting random matrix theory, we show that these measures of quantum chaos clearly distinguish the finite time behavior of probes to quantum chaos corresponding to chaotic spectra given by the Gaussian Unitary Ensemble (GUE) from the integrable spectra given by Poisson distribution and the Gaussian Diagonal Ensemble (GDE).  more » « less
Award ID(s):
2014000
PAR ID:
10341155
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Entropy
Volume:
23
Issue:
8
ISSN:
1099-4300
Page Range / eLocation ID:
1073
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present a systematic construction of probes into the dynamics of isospectral ensembles of Hamiltonians by the notion of Isospectral twirling, expanding the scopes and methods of ref. [1]. The relevant ensembles of Hamiltonians are those defined by salient spectral probability distributions. The Gaussian Unitary Ensembles (GUE) describes a class of quantum chaotic Hamiltonians, while spectra corresponding to the Poisson and Gaussian Diagonal Ensemble (GDE) describe non chaotic, integrable dynamics. We compute the Isospectral twirling of several classes of important quantities in the analysis of quantum many-body systems: Frame potentials, Loschmidt Echos, OTOCs, Entanglement, Tripartite mutual information, coherence, distance to equilibrium states, work in quantum batteries and extension to CP-maps. Moreover, we perform averages in these ensembles by random matrix theory and show how these quantities clearly separate chaotic quantum dynamics from non chaotic ones. 
    more » « less
  2. An important question of quantum information is to characterize genuinely quantum (beyond-Clifford) resources necessary for universal quantum computing. Here, we use the Pauli spectrum to quantify how “magic,” beyond Clifford, typical many-qubit states are. We first present a phenomenological picture of the Pauli spectrum based on quantum typicality, and then we confirm it for Haar random states. We then introduce filtered stabilizer entropy, a magic measure that can resolve the difference between typical and atypical states. We proceed with the numerical study of the Pauli spectrum of states created by random circuits as well as for eigenstates of chaotic Hamiltonians. We find that in both cases, the Pauli spectrum approaches the one of Haar random states, up to exponentially suppressed tails. We discuss how the Pauli spectrum changes when ergodicity is broken due to disorder. Our results underscore the difference between typical and atypical states from the point of view of quantum information 
    more » « less
  3. null (Ed.)
    It is well known that a quantum circuit on N qubits composed of Clifford gates with the addition of k non Clifford gates can be simulated on a classical computer by an algorithm scaling as poly ( N ) exp ⁡ ( k ) \cite{bravyi2016improved}. We show that, for a quantum circuit to simulate quantum chaotic behavior, it is both necessary and sufficient that k = Θ ( N ) . This result implies the impossibility of simulating quantum chaos on a classical computer. 
    more » « less
  4. Shor's factoring algorithm, believed to provide an exponential speedup over classical computation, relies on finding the period of an exactly periodic quantum modular multiplication operator. This exact periodicity is the hallmark of an integrable system, which is paradoxical from the viewpoint of quantum chaos, given that the classical limit of the modular multiplication operator is a highly chaotic system that occupies the “maximally random” Bernoulli level of the classical ergodic hierarchy. In this work, we approach this apparent paradox from a quantum dynamical systems viewpoint, and consider whether signatures of ergodicity and chaos may indeed be encoded in such an “integrable” quantization of a chaotic system. We show that Shor's modular multiplication operator, in specific cases, can be written as a superposition of quantized A -baker's maps exhibiting more typical signatures of quantum chaos and ergodicity. This work suggests that the integrability of Shor's modular multiplication operator may stem from the interference of other “chaotic” quantizations of the same family of maps, and paves the way for deeper studies on the interplay of integrability, ergodicity, and chaos in and via quantum algorithms. Published by the American Physical Society2024 
    more » « less
  5. Out-of-time-ordered correlators (OTOCs) have been extensively studied in recent years as a diagnostic of quantum information scrambling. In this paper, we study quantum information-theoretic aspects of the regularized finite-temperature OTOC. We introduce analytical results for the bipartite regularized OTOC (BROTOC): the regularized OTOC averaged over random unitaries supported over a bipartition. We show that the BROTOC has several interesting properties, for example, it quantifies the purity of the associated thermofield double state and the operator purity of the analytically continued time-evolution operator. At infinite-temperature, it reduces to one minus the operator entanglement of the time-evolution operator. In the zero-temperature limit and for nondegenerate Hamiltonians, the BROTOC probes the groundstate entanglement. By computing long-time averages, we show that the equilibration value of the BROTOC is intimately related to eigenstate entanglement. Finally, we numerically study the equilibration value of the BROTOC for various physically relevant Hamiltonian models and comment on its ability to distinguish integrable and chaotic dynamics. 
    more » « less