skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: HYPERSURFACE SUPPORT FOR NONCOMMUTATIVE COMPLETE INTERSECTIONS
Abstract We introduce an infinite variant of hypersurface support for finite-dimensional, noncommutative complete intersections. We show that hypersurface support defines a support theory for the big singularity category $$\operatorname {Sing}(R)$$ , and that the support of an object in $$\operatorname {Sing}(R)$$ vanishes if and only if the object itself vanishes. Our work is inspired by Avramov and Buchweitz’ support theory for (commutative) local complete intersections. In the companion piece [27], we employ hypersurface support for infinite-dimensional modules, and the results of the present paper, to classify thick ideals in stable categories for a number of families of finite-dimensional Hopf algebras.  more » « less
Award ID(s):
1901854
PAR ID:
10341248
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Nagoya Mathematical Journal
ISSN:
0027-7630
Page Range / eLocation ID:
1 to 20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A local ring R is regular if and only if every finitely generated R -module has finite projective dimension. Moreover, the residue field k is a test module: R is regular if and only if k has finite projective dimension. This characterization can be extended to the bounded derived category $$\mathsf {D}^{\mathsf f}(R)$$ , which contains only small objects if and only if R is regular. Recent results of Pollitz, completing work initiated by Dwyer–Greenlees–Iyengar, yield an analogous characterization for complete intersections: R is a complete intersection if and only if every object in $$\mathsf {D}^{\mathsf f}(R)$$ is proxy small. In this paper, we study a return to the world of R -modules, and search for finitely generated R -modules that are not proxy small whenever R is not a complete intersection. We give an algorithm to construct such modules in certain settings, including over equipresented rings and Stanley–Reisner rings. 
    more » « less
  2. Abstract We consider finite-dimensional Hopf algebras $$u$$ that admit a smooth deformation $$U\to u$$ by a Noetherian Hopf algebra $$U$$ of finite global dimension. Examples of such Hopf algebras include small quantum groups over the complex numbers, restricted enveloping algebras in finite characteristic, and Drinfeld doubles of height $$1$$ group schemes. We provide a means of analyzing (cohomological) support for representations over such $$u$$, via the singularity categories of the hypersurfaces $U/(f)$ associated with functions $$f$$ on the corresponding parametrization space. We use this hypersurface approach to establish the tensor product property for cohomological support, for the following examples: functions on a finite group scheme, Drinfeld doubles of certain height 1 solvable finite group schemes, bosonized quantum complete intersections, and the small quantum Borel in type $$A$$. 
    more » « less
  3. We use hypersurface support to classify thick (two-sided) ideals in the stable categories of representations for several families of finite-dimensional integrable Hopf algebras: bosonized quantum complete intersections, quantum Borels in type A, Drinfeld doubles of height 1 Borels in finite characteristic, and rings of functions on finite group schemes over a perfect field. We then identify the prime ideal (Balmer) spectra for these stable categories. In the curious case of functions on a finite group scheme G, the spectrum of the category is identified not with the spectrum of cohomology, but with the quotient of the spectrum of cohomology by the adjoint action of the subgroup of connected components in G. 
    more » « less
  4. Abstract Let u u be a nontrivial harmonic function in a domain D ⊂ R d D\subset {{\mathbb{R}}}^{d} , which vanishes on an open set of the boundary. In a recent article, we showed that if D D is a C 1 {C}^{1} -Dini domain, then, within the open set, the singular set of u u , defined as { X ∈ D ¯ : u ( X ) = 0 = ∣ ∇ u ( X ) ∣ } \left\{X\in \overline{D}:u\left(X)=0=| \nabla u\left(X)| \right\} , has finite ( d − 2 ) \left(d-2) -dimensional Hausdorff measure. In this article, we show that the assumption of C 1 {C}^{1} -Dini domains is sharp, by constructing a large class of non-Dini (but almost Dini) domains whose singular sets have infinite ℋ d − 2 {{\mathcal{ {\mathcal H} }}}^{d-2} -measures. 
    more » « less
  5. Abstract We define a local homomorphism$$(Q,k)\to (R,\ell )$$to be Koszul if its derived fiber$$R\otimes ^{\mathsf {L}}_Q k$$is formal, and if$$\operatorname {Tor}^{Q}(R,k)$$is Koszul in the classical sense. This recovers the classical definition whenQis a field, and more generally includes all flat deformations of Koszul algebras. The non-flat case is significantly more interesting, and there is no need for examples to be quadratic: all complete intersection and all Golod quotients are Koszul homomorphisms. We show that the class of Koszul homomorphisms enjoys excellent homological properties, and we give many more examples, especially various monomial and Gorenstein examples. We then study Koszul homomorphisms from the perspective of$$\mathrm {A}_{\infty }$$-structures on resolutions. We use this machinery to construct universal free resolutions ofR-modules by generalizing a classical construction of Priddy. The resulting (infinite) free resolution of anR-moduleMis often minimal and can be described by a finite amount of data wheneverMandRhave finite projective dimension overQ. Our construction simultaneously recovers the resolutions of Shamash and Eisenbud over a complete intersection ring, and the bar resolutions of Iyengar and Burke over a Golod ring, and produces analogous resolutions for various other classes of local rings. 
    more » « less