skip to main content


Title: Group-based Motion Prediction for Navigation in Crowded Environments
We focus on the problem of planning the motion of a robot in a dynamic multiagent environment such as a pedestrian scene. Enabling the robot to navigate safely and in a socially compliant fashion in such scenes requires a representation that accounts for the unfolding multiagent dynamics. Existing approaches to this problem tend to employ microscopic models of motion prediction that reason about the individual behavior of other agents. While such models may achieve high tracking accuracy in trajectory prediction benchmarks, they often lack an understanding of the group structures unfolding in crowded scenes. Inspired by the Gestalt theory from psychology, we build a Model Predictive Control framework (G-MPC) that leverages group-based prediction for robot motion planning. We conduct an extensive simulation study involving a series of challenging navigation tasks in scenes extracted from two real-world pedestrian datasets. We illustrate that G-MPC enables a robot to achieve statistically significantly higher safety and lower number of group intrusions than a series of baselines featuring individual pedestrian motion prediction models. Finally, we show that G-MPC can handle noisy lidar-scan estimates without significant performance losses.  more » « less
Award ID(s):
1734361
PAR ID:
10341308
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 5th Conference on Robot Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We focus on decentralized navigation among multiple non-communicating agents in continuous domains without explicit traffic rules, such as sidewalks, hallways, or squares. Following collision-free motion in such domains requires effective mechanisms of multiagent behavior prediction. Although this prediction problem can be shown to be NP-hard, humans are often capable of solving it efficiently by leveraging sophisticated mechanisms of implicit coordination. Inspired by the human paradigm, we propose a novel topological formalism that explicitly models multiagent coordination. Our formalism features both geometric and algebraic descriptions enabling the use of standard gradient-based optimization techniques for trajectory generation but also symbolic inference over coordination strategies. In this article, we contribute (a) HCP (Hamiltonian Coordination Primitives), a novel multiagent trajectory-generation pipeline that accommodates spatiotemporal constraints formulated as symbolic topological specifications corresponding to a desired coordination strategy; (b) HCPnav, an online planning framework for decentralized collision avoidance that generates motion by following multiagent trajectory primitives corresponding to high-likelihood, low-cost coordination strategies. Through a series of challenging trajectory-generation experiments, we show that HCP outperforms a trajectory-optimization baseline in generating trajectories of desired topological specifications in terms of success rate and computational efficiency. Finally, through a variety of navigation experiments, we illustrate the efficacy of HCPnav in handling challenging multiagent navigation scenarios under homogeneous or heterogeneous agents across a series of environments of different geometry.

     
    more » « less
  2. Pedestrian regulation can prevent crowd accidents and improve crowd safety in densely populated areas. Recent studies use mobile robots to regulate pedestrian flows for desired collective motion through the effect of passive human-robot interaction (HRI). This paper formulates a robot motion planning problem for the optimization of two merging pedestrian flows moving through a bottleneck exit. To address the challenge of feature representation of complex human motion dynamics under the effect of HRI, we propose using a deep neural network to model the mapping from the image input of pedestrian environments to the output of robot motion decisions. The robot motion planner is trained end-to-end using a deep reinforcement learning algorithm, which avoids hand-crafted feature detection and extraction, thus improving the learning capability for complex dynamic problems. Our proposed approach is validated in simulated experiments, and its performance is evaluated. The results demonstrate that the robot is able to find optimal motion decisions that maximize the pedestrian outflow in different flow conditions, and the pedestrian-accumulated outflow increases significantly compared to cases without robot regulation and with random robot motion. 
    more » « less
  3. Pedestrian flow in densely-populated or congested areas usually presents irregular or turbulent motion state due to competitive behaviors of individual pedestrians, which reduces flow efficiency and raises the risk of crowd accidents. Effective pedestrian flow regulation strategies are highly valuable for flow optimization. Existing studies seek for optimal design of indoor architectural features and spatial placement of pedestrian facilities for the purpose of flow optimization. However, once placed, the stationary facilities are not adaptive to real-time flow changes. In this paper, we investigate the problem of regulating two merging pedestrian flows in a bottleneck area using a mobile robot moving among the pedestrian flows. The pedestrian flows are regulated through dynamic human-robot interaction (HRI) during their collective motion. We adopt an adaptive dynamic programming (ADP) method to learn the optimal motion parameters of the robot in real time, and the resulting outflow through the bottleneck is maximized with the crowd pressure reduced to avoid potential crowd disasters. The proposed algorithm is a data-driven approach that only uses camera observation of pedestrian flows without explicit models of pedestrian dynamics and HRI. Extensive simulation studies are performed in both Matlab and a robotic simulator to verify the proposed approach and evaluate the performances 
    more » « less
  4. Performing robust goal-directed manipulation tasks remains a crucial challenge for autonomous robots. In an ideal case, shared autonomous control of manipulators would allow human users to specify their intent as a goal state and have the robot reason over the actions and motions to achieve this goal. However, realizing this goal remains elusive due to the problem of perceiving the robot’s environment. We address and describe the problem of axiomatic scene estimation for robot manipulation in cluttered scenes which is the estimation of a tree-structured scene graph describing the configuration of objects observed from robot sensing. We propose generative approaches to scene inference (as the axiomatic particle filter, and the axiomatic scene estimation by Markov chain Monte Carlo based sampler) of the robot’s environment as a scene graph. The result from AxScEs estimation are axioms amenable to goal-directed manipulation through symbolic inference for task planning and collision-free motion planning and execution. We demonstrate the results for goal-directed manipulation of multi-object scenes by a PR2 robot. 
    more » « less
  5. This work studies the problem of predicting human intent to interact with a robot in a public environment. To facilitate research in this problem domain, we first contribute the People Approaching Robots Database (PAR-D), a new collection of datasets for intent prediction in Human-Robot Interaction. The database includes a subset of the ATC Approach Trajectory dataset [28] with augmented ground truth labels. It also includes two new datasets collected with a robot photographer on two locations of a university campus. Then, we contribute a novel human-annotated baseline for predicting intent. Our results suggest that the robot’s environment and the amount of time that a person is visible impacts human performance in this prediction task. We also provide computational baselines for intent prediction in PAR-D by comparing the performance of several machine learning models, including ones that directly model pedestrian interaction intent and others that predict motion trajectories as an intermediary step. From these models, we find that trajectory prediction seems useful for inferring intent to interact with a robot in a public environment. 
    more » « less