skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Did Human Culture Emerge in a Cultural Evolutionary Transition in Individuality?
Abstract Evolutionary Transitions in Individuality (ETI) have been responsible for the major transitions in levels of selection and individuality in natural history, such as the origins of prokaryotic and eukaryotic cells, multicellular organisms, and eusocial insects. The integrated hierarchical organization of life thereby emerged as groups of individuals repeatedly evolved into new and more complex kinds of individuals. The Social Protocell Hypothesis (SPH) proposes that the integrated hierarchical organization of human culture can also be understood as the outcome of an ETI—one that produced a “cultural organism” (a “sociont”) from a substrate of socially learned traditions that were contained in growing and dividing social communities. The SPH predicts that a threshold degree of evolutionary individuality would have been achieved by 2.0–2.5 Mya, followed by an increasing degree of evolutionary individuality as the ETI unfolded. We here assess the SPH by applying a battery of criteria—developed to assess evolutionary individuality in biological units—to cultural units across the evolutionary history of Homo. We find an increasing agreement with these criteria, which buttresses the claim that an ETI occurred in the cultural realm.  more » « less
Award ID(s):
2029999
PAR ID:
10341424
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Biological Theory
Volume:
16
Issue:
4
ISSN:
1555-5542
Page Range / eLocation ID:
213 to 236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Did human culture arise through an evolutionary transition in individuality (ETI)? To address this question, we examine the steps of biological ETIs to see how they could apply to the evolution of human culture. For concreteness, we illustrate the ETI stages using a well-studied example, the evolution of multicellularity in the volvocine algae. We then consider how those stages could apply to a cultural transition involving integrated groups of cultural traditions and the hominins that create and transmit traditions. We focus primarily on the early Pleistocene and examine hominin carnivory and the cultural change from Oldowan to Acheulean technology. We use Pan behaviour as an outgroup comparison. We summarize the important similarities and differences we find between ETI stages in the biological and cultural realms. As we are not cultural anthropologists, we may overlook or be mistaken in the processes we associate with each step. We hope that by clearly describing these steps to individuality and illustrating them with cultural principles and processes, other researchers may build upon our initial exercise. Our analysis supports the hypothesis that human culture has undergone an ETI beginning with a Pan -like ancestor, continuing during the Pleistocene, and culminating in modern human culture. This article is part of the theme issue ‘Human socio-cultural evolution in light of evolutionary transitions’. 
    more » « less
  2. The emergence of new replicating entities from the union of simpler entities characterizes some of the most profound events in natural evolutionary history. Such transitions in individuality are essential to the evolution of the most complex forms of life. Thus, understanding these transitions is critical to building artificial systems capable of open-ended evolution. Alas, these transitions are challenging to induce or detect, even with computational organisms. Here, we introduce the DISHTINY (Distributed Hierarchical Transitions in Individuality) platform, which provides simple cell-like organisms with the ability and incentive to unite into new individuals in a manner that can continue to scale to subsequent transitions. The system is designed to encourage these transitions so that they can be studied: Organisms that coordinate spatiotemporally can maximize the rate of resource harvest, which is closely linked to their reproductive ability. We demonstrate the hierarchical emergence of multiple levels of individuality among simple cell-like organisms that evolve parameters for manually designed strategies. During evolution, we observe reproductive division of labor and close cooperation among cells, including resource-sharing, aggregation of resource endowments for propagules, and emergence of an apoptosis response to somatic mutation. Many replicate populations evolved to direct their resources toward low-level groups (behaving like multicellular individuals), and many others evolved to direct their resources toward high-level groups (acting as larger-scale multicellular individuals). 
    more » « less
  3. The Price equation embodies the ‘conditions approach’ to evolution in which the Darwinian conditions of heritable variation in fitness are represented in equation form. The equation can be applied recursively, leading to a partition of selection at the group and individual levels. After reviewing the well-known issues with the Price partition, as well as issues with a partition based on contextual analysis, we summarize a partition of group and individual selection based on counterfactual fitness, the fitness that grouped cells would have were they solitary. To understand ‘group selection’ in multi-level selection models, we assume that only group selection can make cells suboptimal when they are removed from the group. Our analyses suggest that there are at least three kinds of selection that can be occurring at the same time: group-specific selection along with two kinds of individual selection, within-group selection and global individual selection. Analyses based on counterfactual fitness allow us to specify how close a group is to being a pseudo-group, and this can be a basis for quantifying progression through an evolutionary transition in individuality (ETI). During an ETI, fitnesses at the two levels, group and individual, become decoupled, in the sense that fitness in a group may be quite high, even as counterfactual fitness goes to zero. This article is part of the theme issue ‘Fifty years of the Price equation’. 
    more » « less
  4. Studying the behavioral and life history transitions from a cooperative, eusocial life history to exploitative social parasitism allows for deciphering the conditions under which changes in behavior and social organization lead to diversification. The Holarctic ant genus Formica is ideally suited for studying the evolution of social parasitism because half of its 172 species are confirmed or suspected social parasites, which includes all three major classes of social parasitism known in ants. However, the life history transitions associated with the evolution of social parasitism in this genus are largely unexplored. To test competing hypotheses regarding the origins and evolution of social parasitism, we reconstructed a global phylogeny of Formica ants. The genus originated in the Old World ∼30 Ma ago and dispersed multiple times to the New World and back. Within Formica , obligate dependent colony-founding behavior arose once from a facultatively polygynous common ancestor practicing independent and facultative dependent colony foundation. Temporary social parasitism likely preceded or arose concurrently with obligate dependent colony founding, and dulotic social parasitism evolved once within the obligate dependent colony-founding clade. Permanent social parasitism evolved twice from temporary social parasitic ancestors that rarely practiced colony budding, demonstrating that obligate social parasitism can originate from a facultative parasitic background in socially polymorphic organisms. In contrast to permanently socially parasitic ants in other genera, the high parasite diversity in Formica likely originated via allopatric speciation, highlighting the diversity of convergent evolutionary trajectories resulting in nearly identical parasitic life history syndromes. 
    more » « less
  5. The allometric scaling of metabolic rate and what drives it are major questions in biology with a long history. Since the metabolic rate at any level of biological organization is an emergent property of its lower-level constituents, it is an outcome of the intrinsic heterogeneity among these units and the interactions among them. However, the influence of lower-level heterogeneity on system-level metabolic rate is difficult to investigate, given the tightly integrated body plan of unitary organisms. In this context, social insects such as honeybees can serve as important model systems because unlike unitary organisms, these superorganisms can be taken apart and reassembled in different configurations to study metabolic rate and its various drivers at different levels of organization. This commentary discusses the background of such an approach and how combining it with artificial selection to generate heterogeneity in metabolic rate with an analytical framework to parse out the different mechanisms that contribute to the effects of heterogeneity can contribute to the various models of metabolic scaling. Finally, the absence of the typical allometric scaling relationship among different species of honeybees is discussed as an important prospect for deciphering the role of top-down ecological factors on metabolic scaling. This article is part of the theme issue ‘The evolutionary significance of variation in metabolic rates’. 
    more » « less