skip to main content

Title: Outbreaks of Douglas-Fir Beetle Follow Western Spruce Budworm Defoliation in the Southern Rocky Mountains, USA
Changes in climate are altering disturbance regimes in forests of western North America, leading to increases in the potential for disturbance events to overlap in time and space. Though interactions between abiotic and biotic disturbance (e.g., the effect of bark beetle outbreak on subsequent wildfire) have been widely studied, interactions between multiple biotic disturbances are poorly understood. Defoliating insects, such as the western spruce budworm (WSB; Choristoneura freemanni), have been widely suggested to predispose trees to secondary colonization by bark beetles, such as the Douglas-fir beetle (DFB; Dendroctonus pseudotsugae). However, there is little quantitative research that supports this observation. Here, we asked: Does previous WSB damage increase the likelihood of subsequent DFB outbreak in Douglas-fir (Pseudotsuga menziesii) forests of the Southern Rocky Mountains, USA? To quantify areas affected by WSB and then DFB, we analyzed Aerial Detection Survey data from 1999–2019. We found that a DFB presence followed WSB defoliation more often than expected under a null model (i.e., random distribution). With climate change expected to intensify some biotic disturbances, an understanding of the interactions between insect outbreaks is important for forest management planning, as well as for improving our understanding of forest change.
; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Watt, Michael (Ed.)
    Purpose of Review Outbreaks of tree-killing bark beetles have reached unprecedented levels in conifer forests in the northern hemisphere and are expected to further intensify due to climate change. In parts of Europe, bark beetle outbreaks and efforts to manage them have even triggered social unrests and political instability. These events have increasingly challenged traditional responses to outbreaks, and highlight the need for a more comprehensive management framework. Recent Findings Several synthesis papers on different aspects of bark beetle ecology and management exist. However, our understanding of outbreak drivers and impacts, principles of ecosystem management, governance, and the role of climate change in the dynamics of ecological and social systems has rapidly advanced in recent years. These advances are suggesting a reconsideration of previous management strategies. Summary We synthesize the state of knowledge on drivers and impacts of bark beetle outbreaks in Europe and propose a comprehensive context-dependent framework for their management. We illustrate our ideas for two contrasting societal objectives that represent the end-members of a continuum of forest management goals: wood and biomass production and the conservation of biodiversity and natural processes. For production forests, we propose a management approach addressing economic, social, ecological, infrastructural, and legislative aspectsmore »of bark beetle disturbances. In conservation forests, where non-intervention is the default option, we elaborate under which circumstances an active intervention is necessary, and whether such an intervention is in conflict with the objective to conserve biodiversity. Our approach revises the current management response to bark beetles in Europe and promotes an interdisciplinary social-ecological approach to dealing with disturbances.« less
  2. Since the late 1990s, extensive outbreaks of native bark beetles (Curculionidae: Scolytinae) have affected coniferous forests throughout Europe and North America, driving changes in carbon storage, wildlife habitat, nutrient cycling, and water resource provisioning. Remote sensing is a crucial tool for quantifying the effects of these disturbances across broad landscapes. In particular, Landsat time series (LTS) are increasingly used to characterize outbreak dynamics, including the presence and severity of bark beetle-caused tree mortality, though broad-scale LTS-based maps are rarely informed by detailed field validation. Here we used spatial and temporal information from LTS products, in combination with extensive field data and Random Forest (RF) models, to develop 30-m maps of the presence (i.e., any occurrence) and severity (i.e., cumulative percent basal area mortality) of beetle-caused tree mortality 1997–2019 in subalpine forests throughout the Southern Rocky Mountains, USA. Using resultant maps, we also quantified spatial patterns of cumulative tree mortality throughout the region, an important yet poorly understood concept in beetle-affected forests. RF models using LTS products to predict presence and severity performed well, with 80.3% correctly classified (Kappa = 0.61) and R2 = 0.68 (RMSE = 17.3), respectively. We found that ≥10,256 km2 of subalpine forest area (39.5% of themore »study area) was affected by bark beetles and 19.3% of the study area experienced ≥70% tree mortality over the twenty-three year period. Variograms indicated that severity was autocorrelated at scales < 250 km. Interestingly, cumulative patch-size distributions showed that areas with a near-total loss of the overstory canopy (i.e., ≥90% mortality) were relatively small (<0.24 km2) and isolated throughout the study area. Our findings help to inform an understanding of the variable effects of bark beetle outbreaks across complex forested regions and provide insight into patterns of disturbance legacies, landscape connectivity, and susceptibility to future disturbance.« less
  3. The effects of anthropogenic climate change are apparent in the Greater Yellowstone Ecosystem (GYE), USA, with forest die-off, insect outbreaks, and wildfires impacting forest ecosystems. A long-term perspective would enable assessment of the historical range of variability in forest ecosystems and better determination of recent forest dynamics and historical thresholds. The objectives of this study were to (1) develop tree-ring chronologies for Engelmann spruce and Douglas fir growing at the study location, (2) correlate the annual ring widths of each species to monthly climate variables, (3) examine the instrumental climate data for regimes shifts in the mean state of variables, and (4) determine when ecological disturbances occurred through a quantification of growth releases. Finally, we discuss both climate-growth relationships and growth releases in the context of climate regime shifts and known forest disturbances. Engelmann spruce and Douglas fir showed some similar climate responses using moving correlation analysis including negative correlations between ring width and June –August current year temperature and previous growing season temperature. Regime shift analysis indicated significant ( p < 0.05) shifts in minimum and maximum GYE temperature in the latter half of the 20th century. Disturbance analysis indicated that both tree species responded to wildfire and insectmore »outbreak events with growth releases in up to 25% of the trees. Disentangling the influence of climate regime shifts and forest disturbances on the climate- growth relationships can be difficult because climate and forest disturbances are intricately linked. Our evidence indicates that regime shifts in monthly climate variables and forest disturbances as recorded by growth releases can influence the ring width response to climate over time. Trees are key to providing a long-term perspective on climate and ecological health across the GYE because they integrate both climate and ecology in their annual ring widths.« less
  4. Abstract. Mountain pine beetle (MPB) outbreaks in the western United States result inwidespread tree mortality, transforming forest structure within watersheds.While there is evidence that these changes can alter the timing and quantity of streamflow, there is substantial variation in both the magnitude and direction of hydrologic responses, and the climatic and environmental mechanisms driving this variation are not well understood. Herein, we coupled an eco-hydrologic model (RHESSys) with a beetle effects model and applied it to a semiarid watershed, Trail Creek, in the Bigwood River basin in central Idaho, USA, to examine how varying degrees of beetle-caused tree mortality influence water yield. Simulation results show that water yield during the first 15 years after beetle outbreak is controlled by interactions between interannual climate variability, the extent of vegetation mortality, and long-term aridity. During wet years, water yield after a beetle outbreak increased with greater tree mortality; this was driven by mortality-caused decreases in evapotranspiration. During dry years, water yield decreased at low-to-medium mortality but increased at high mortality. The mortality threshold for the direction of change was location specific. The change in water yield also varied spatially along aridity gradients during dry years. In wetter areas of the Trail Creek basin, post-outbreak watermore »yield decreased at low mortality (driven by an increase in ground evaporation) and increased when vegetation mortality was greater than 40 % (driven by a decrease in canopy evaporation and transpiration). In contrast, in more water-limited areas, water yield typically decreased after beetle outbreaks, regardless of mortality level (although the driving mechanisms varied). Our findings highlight the complexity and variability of hydrologic responses and suggest that long-term (i.e., multi-decadal mean) aridity can be a useful indicator for the direction of water yield changes after a disturbance.« less
  5. Bark beetles naturally inhabit forests and can cause large-scale tree mortality when they reach epidemic population numbers. A recent epidemic (1990s–2010s), primarily driven by mountain pine beetles ( Dendroctonus ponderosae ), was a leading mortality agent in western United States forests. Predictive models of beetle populations and their impact on forests largely depend on host related parameters, such as stand age, basal area, and density. We hypothesized that bark beetle attack patterns are also dependent on inferred beetle population densities: large epidemic populations of beetles will preferentially attack large-diameter trees, and successfully kill them with overwhelming numbers. Conversely, small endemic beetle populations will opportunistically attack stressed and small trees. We tested this hypothesis using 12 years of repeated field observations of three dominant forest species (lodgepole pine Pinus contorta , Engelmann spruce Picea engelmannii , and subalpine fir Abies lasiocarpa ) in subalpine forests of southeastern Wyoming paired with a Bayesian modeling approach. The models provide probabilistic predictions of beetle attack patterns that are free of assumptions required by frequentist models that are often violated in these data sets. Furthermore, we assessed seedling/sapling regeneration in response to overstory mortality and hypothesized that higher seedling/sapling establishment occurs in areas with highestmore »overstory mortality because resources are freed from competing trees. Our results indicate that large-diameter trees were more likely to be attacked and killed by bark beetles than small-diameter trees during epidemic years for all species, but there was no shift toward preferentially attacking small-diameter trees in post-epidemic years. However, probabilities of bark beetle attack and mortality increased for small diameter lodgepole pine and Engelmann spruce trees in post-epidemic years compared to epidemic years. We also show an increase in overall understory growth (graminoids, forbs, and shrubs) and seedling/sapling establishment in response to beetle-caused overstory mortality, especially in lodgepole pine dominated stands. Our observations provide evidence of the trajectories of attack and mortality as well as early forest regrowth of three common tree species during the transition from epidemic to post-epidemic stages of bark beetle populations in the field.« less