skip to main content


Search for: All records

Award ID contains: 1853520

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Biotic disturbances that overlap in space and time may result in important shifts in forest structure and composition, with potential effects on many ecosystem services. Starting in the late 1990s, outbreaks of multiple bark beetle species caused widespread mortality of three co‐occurring conifer species in the ca. 40,000‐km2subalpine zone of the southern Rocky Mountains (SRM), USA. To better understand the implications of such outbreaks, our goal was to determine if overlapping outbreaks of multiple bark beetle species caused greater tree mortality than single‐species outbreaks in stands with multiple susceptible host tree species. We mapped stand susceptibility to outbreaks of spruce beetle (SB,Dendroctonus rufipennis), mountain pine beetle (MPB,Dendroctonus ponderosae), and western balsam bark beetle (WBBB,Dryocoetes confusus) by combining aerial survey data and forest composition variables in a random forest modeling framework. Then, we used existing maps of cumulative forest mortality from bark beetles to investigate the extent and severity of overlapping outbreaks from 1999 to 2019. We found that 46% of stands with two or more of the three studied hosts species—Engelmann spruce (Picea engelmannii), lodgepole pine (Pinus contortavar.latifolia), or subalpine fir (Abies lasiocarpa)—were susceptible to overlapping outbreaks (25% of all sampled stands). Of those stands, 31% experienced outbreaks of two or more beetle species. Stands affected by outbreaks of both MPB and SB had higher tree mortality than stands affected by one species alone, though stands susceptible to both MPB and SB were uncommon (<4% of all sampled stands). No other combinations of beetle outbreaks increased tree mortality above levels caused by single‐species outbreaks. Thus, contrary to expectations, overlapping outbreaks were rarely more severe than single‐species outbreaks in the SRM. This suggests that diverse forest communities may buffer against the most severe effects of bark beetle outbreaks, even during warm, dry conditions.

     
    more » « less
  2. Over the past several decades, forests worldwide have experienced increases in biotic disturbances caused by insects and plant pathogens – a trend that is expected to continue with climate warming. Whereas the causes and effects of individual biotic disturbances are well studied, spatiotemporal interactions among multiple biotic disturbances are less so, despite their importance to ecosystem function and resilience. Here, we highlight an emerging phenomenon of “hotspots” of biotic disturbances (that is, two or more biotic disturbances that overlap in space and time), documenting trends in recent decades in temperate conifer forests of the western US. We also explore potential mechanisms behind and effects of biotic disturbance hotspots, with particular focus on how altered post‐disturbance recovery (successional pathways) can have profound consequences for ecosystem resilience and biodiversity conservation. Finally, we propose research directions that can elucidate drivers of biotic disturbance hotspots and their ecological effects at various spatial scales, and provide insight into this new knowledge frontier.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  3. Context: Growth releases of individuals that survive disturbances are important compensatory response mechanisms that contribute to ecological resilience. However, the role of fine-scale spatial heterogeneity in shaping compensatory growth responses is poorly understood for many broad-scale disturbances. Objectives: We quantified how fine-scale spatial structure affects individual and aggregate tree growthleading up to and following a severe mountain pine beetle (MPB; Dendroctonus ponderosae) outbreak. We asked: (1) How does individual tree growth vary with tree- and neighborhood-scale characteristics? (2) How do within-stand aggregate growth and overstory recruitment vary with neighborhood-scale characteristics? Methods: We used a spatially explicit long-term monitoring dataset of a subalpine lodgepole pine (Pinus contorta var. latifolia) forest (in Colorado, USA) in which every tree ≥ 5 cm diameter was measured and mapped prior to (1989, 2004) and following (2018) a severe MPB outbreak (2003–2011). We used spatial regression to characterize drivers of growth. Results: Overall, we found strong evidence for post-outbreak compensatory responses across spatial scales. Neighborhood characteristics shaped both individual and aggregate growth, with the magnitude of growth strongly mediated by pre-outbreak neighborhood structure and neighborhood mortality. Variation in tree-scale growth, combined with the spatial arrangement of surviving trees, resulted in highly variable emergent patterns of aggregate growth and recruitment. Conclusion: Our findings highlight the importance of fine-scale landscape configuration in shaping forest resilience. Quantifying compensatory responses in a spatially explicit framework at different scales is critical for modeling post-disturbance forest dynamics, which is increasingly important as climate warms and forest disturbance regimes change. 
    more » « less
  4. 1. Amplified by warming temperatures and drought, recent outbreaks of native bark beetles (Curculionidae: Scolytinae) have caused extensive tree mortality throughout Europe and North America. Despite their ubiquitous nature and important effects on ecosystems, forest recovery following such disturbances is poorly understood, particularly across regions with varying abiotic conditions and outbreak effects. 2. To better understand post-outbreak recovery across a topographically complex region, we synthesized data from 16 field studies spanning subalpine forests in the Southern Rocky Mountains, USA. From 1997 to 2019, these forests were heavily affected by outbreaks of three native bark beetle species (Dendroctonus ponderosae, Dendroctonus rufipennis and Dryocoetes confusus). We compared pre- and post-outbreak forest conditions and developed region-wide predictive maps of post-outbreak (1) live basal areas, (2) juvenile densities and (3) height growth rates for the most abundant tree species – aspen (Populus tremuloides), Engelmann spruce (Picea engelmannii), lodgepole pine (Pinus contorta) and subalpine fir (Abies lasiocarpa). 3. Beetle-caused tree mortality reduced the average diameter of live trees by 28.4% (5.6 cm), and species dominance was altered on 27.8% of field plots with shifts away from pine and spruce. However, most plots (82.1%) were likely to recover towards pre-outbreak tree densities without additional regeneration. Region-wide maps indicated that fir and aspen, non-host species for bark beetle species with the most severe effects (i.e. Dendroctonus spp.), will benefit from outbreaks through increased compositional dominance. After accounting for individual size, height growth for all conifer species was more rapid in sites with low winter precipitation, high winter temperatures and severe outbreaks. 4. Synthesis. In subalpine forests of the US Rocky Mountains, recent bark beetle outbreaks have reduced tree size and altered species composition. While eventual recovery of the pre-outbreak forest structure is likely in most places, changes in species composition may persist for decades. Still, forest communities following bark beetle outbreaks are widely variable due to differences in pre-outbreak conditions, outbreak severity and abiotic gradients. This regional variability has critical implications for ecosystem services and susceptibility to future disturbances. 
    more » « less
  5. Changes in climate are altering disturbance regimes in forests of western North America, leading to increases in the potential for disturbance events to overlap in time and space. Though interactions between abiotic and biotic disturbance (e.g., the effect of bark beetle outbreak on subsequent wildfire) have been widely studied, interactions between multiple biotic disturbances are poorly understood. Defoliating insects, such as the western spruce budworm (WSB; Choristoneura freemanni), have been widely suggested to predispose trees to secondary colonization by bark beetles, such as the Douglas-fir beetle (DFB; Dendroctonus pseudotsugae). However, there is little quantitative research that supports this observation. Here, we asked: Does previous WSB damage increase the likelihood of subsequent DFB outbreak in Douglas-fir (Pseudotsuga menziesii) forests of the Southern Rocky Mountains, USA? To quantify areas affected by WSB and then DFB, we analyzed Aerial Detection Survey data from 1999–2019. We found that a DFB presence followed WSB defoliation more often than expected under a null model (i.e., random distribution). With climate change expected to intensify some biotic disturbances, an understanding of the interactions between insect outbreaks is important for forest management planning, as well as for improving our understanding of forest change. 
    more » « less
  6. null (Ed.)
    Since the late 1990s, extensive outbreaks of native bark beetles (Curculionidae: Scolytinae) have affected coniferous forests throughout Europe and North America, driving changes in carbon storage, wildlife habitat, nutrient cycling, and water resource provisioning. Remote sensing is a crucial tool for quantifying the effects of these disturbances across broad landscapes. In particular, Landsat time series (LTS) are increasingly used to characterize outbreak dynamics, including the presence and severity of bark beetle-caused tree mortality, though broad-scale LTS-based maps are rarely informed by detailed field validation. Here we used spatial and temporal information from LTS products, in combination with extensive field data and Random Forest (RF) models, to develop 30-m maps of the presence (i.e., any occurrence) and severity (i.e., cumulative percent basal area mortality) of beetle-caused tree mortality 1997–2019 in subalpine forests throughout the Southern Rocky Mountains, USA. Using resultant maps, we also quantified spatial patterns of cumulative tree mortality throughout the region, an important yet poorly understood concept in beetle-affected forests. RF models using LTS products to predict presence and severity performed well, with 80.3% correctly classified (Kappa = 0.61) and R2 = 0.68 (RMSE = 17.3), respectively. We found that ≥10,256 km2 of subalpine forest area (39.5% of the study area) was affected by bark beetles and 19.3% of the study area experienced ≥70% tree mortality over the twenty-three year period. Variograms indicated that severity was autocorrelated at scales < 250 km. Interestingly, cumulative patch-size distributions showed that areas with a near-total loss of the overstory canopy (i.e., ≥90% mortality) were relatively small (<0.24 km2) and isolated throughout the study area. Our findings help to inform an understanding of the variable effects of bark beetle outbreaks across complex forested regions and provide insight into patterns of disturbance legacies, landscape connectivity, and susceptibility to future disturbance. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)