skip to main content


Title: Identifying Candidate Genetic Markers of CDV Cross-Species Pathogenicity in African Lions
Canine distemper virus (CDV) is a multi-host pathogen with variable clinical outcomes of infection across and within species. We used whole-genome sequencing (WGS) to search for viral markers correlated with clinical distemper in African lions. To identify candidate markers, we first documented single-nucleotide polymorphisms (SNPs) differentiating CDV strains associated with different clinical outcomes in lions in East Africa. We then conducted evolutionary analyses on WGS from all global CDV lineages to identify loci subject to selection. SNPs that both differentiated East African strains and were under selection were mapped to a phylogenetic tree representing global CDV diversity to assess if candidate markers correlated with documented outbreaks of clinical distemper in lions (n = 3). Of 54 SNPs differentiating East African strains, ten were under positive or episodic diversifying selection and 20 occurred in the clinical strain despite strong purifying selection at those loci. Candidate markers were in functional domains of the RNP complex (n = 19), the matrix protein (n = 4), on CDV glycoproteins (n = 5), and on the V protein (n = 1). We found mutations at two loci in common between sequences from three CDV outbreaks of clinical distemper in African lions; one in the signaling lymphocytic activation molecule receptor (SLAM)-binding region of the hemagglutinin protein and another in the catalytic center of phosphodiester bond formation on the large polymerase protein. These results suggest convergent evolution at these sites may have a functional role in clinical distemper outbreaks in African lions and uncover potential novel barriers to pathogenicity in this species.  more » « less
Award ID(s):
1907022
NSF-PAR ID:
10341988
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Pathogens
Volume:
9
Issue:
11
ISSN:
2076-0817
Page Range / eLocation ID:
872
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The outcome of pathogen spillover from a reservoir to a novel host population can range from a “dead‐end” when there is no onward transmission in the recipient population, to epidemic spread and even establishment in new hosts. Understanding the evolutionary epidemiology of spillover events leading to discrete outcomes in novel hosts is key to predicting risk and can lead to a better understanding of the mechanisms of emergence. Here we use a Bayesian phylodynamic approach to examine cross‐species transmission and evolutionary dynamics during a canine distemper virus (CDV) spillover event causing clinical disease and population decline in an African lion population (Panthera leo) in the Serengeti Ecological Region between 1993 and 1994. Using 21 near‐complete viral genomes from four species we found that this large‐scale outbreak was likely  ignited by a single cross‐species spillover event from a canid reservoir to noncanid hosts <1 year before disease detection and explosive spread of CDV in lions. Cross‐species transmission from other noncanid species probably fuelled the high prevalence of CDV across spatially structured lion prides. Multiple lines of evidence suggest that spotted hyenas (Crocuta crocuta) could have acted as the proximate source of CDV exposure in lions. We report 13 nucleotide substitutions segregating CDV strains found in canids and noncanids. Our results are consistent with the hypothesis that virus evolution played a role in CDV emergence in noncanid hosts following spillover during the outbreak, suggest that host barriers to clinical infection can limit outcomes of CDV spillover in novel host species.

     
    more » « less
  2. Abstract

    Predicting infectious disease dynamics is a central challenge in disease ecology. Models that can assess which individuals are most at risk of being exposed to a pathogen not only provide valuable insights into disease transmission and dynamics but can also guide management interventions. Constructing such models for wild animal populations, however, is particularly challenging; often only serological data are available on a subset of individuals and nonlinear relationships between variables are common.

    Here we provide a guide to the latest advances in statistical machine learning to construct pathogen‐risk models that automatically incorporate complex nonlinear relationships with minimal statistical assumptions from ecological data with missing data. Our approach compares multiple machine learning algorithms in a unified environment to find the model with the best predictive performance and uses game theory to better interpret results. We apply this framework on two major pathogens that infect African lions: canine distemper virus (CDV) and feline parvovirus.

    Our modelling approach provided enhanced predictive performance compared to more traditional approaches, as well as new insights into disease risks in a wild population. We were able to efficiently capture and visualize strong nonlinear patterns, as well as model complex interactions between variables in shaping exposure risk from CDV and feline parvovirus. For example, we found that lions were more likely to be exposed to CDV at a young age but only in low rainfall years.

    When combined with our data calibration approach, our framework helped us to answer questions about risk of pathogen exposure that are difficult to address with previous methods. Our framework not only has the potential to aid in predicting disease risk in animal populations, but also can be used to build robust predictive models suitable for other ecological applications such as modelling species distribution or diversity patterns.

     
    more » « less
  3. Abstract

    Many parasites infect multiple hosts, but estimating the transmission across host species remains a key challenge in disease ecology. We investigated the within and across host species dynamics of canine distemper virus (CDV) in grizzly bears (Ursus arctos) and wolves (Canis lupus) of the Greater Yellowstone Ecosystem (GYE). We hypothesized that grizzly bears may be more likely to be exposed toCDVduring outbreaks in the wolf population because grizzly bears often displace wolves while scavenging carcasses. We used serological data collected from 1984 to 2014 in conjunction with Bayesian state‐space models to infer the temporal dynamics ofCDV. These models accounted for the unknown timing of pathogen exposure, and we assessed how different testing thresholds and the potential for testing errors affected our conclusions. We identified three mainCDVoutbreaks (1999, 2005, and 2008) in wolves, which were more obvious when we used higher diagnostic thresholds to qualify as seropositive. There was some evidence for increased exposure rates in grizzly bears in 2005, but the magnitude of the wolf effect on bear exposures was poorly estimated and depended upon our prior distributions. Grizzly bears were exposed toCDVprior to wolf reintroduction and during time periods outside of known wolf outbreaks, thus wolves are only one of several potential routes for grizzly bear exposures. Our modeling approach accounts for several of the shortcomings of serological data and is applicable to many wildlife disease systems, but is most informative when testing intervals are short.CDVcirculates in a wide range of carnivore species, but it remains unclear whether the disease persists locally within theGYEcarnivore community or is periodically reintroduced from distant regions with larger host populations.

     
    more » « less
  4. Abstract

    Incorporation of new sources of genetic diversity into plant breeding programs is crucial for continuing to improve yield and quality, as well as tolerance to abiotic and biotic stresses. A minicore (the “University of California, Riverside (UCR) Minicore”) composed of 368 worldwide accessions of cultivated cowpea has been assembled, having been derived from the UCR cowpea collection. High‐density genotyping with 51,128 SNPs followed by principal component and genetic assignment analyses identified six subpopulations in the UCR Minicore, mainly differentiated by cultivar group and geographic origin. All six subpopulations were present to some extent in West African material, suggesting that West Africa is a center of diversity for cultivated cowpea. Additionally, population structure analyses supported two routes of introduction of cowpea into the U.S.: (1) from Spain to the southwest U.S. through Northern Mexico and (2) from Africa to the southeast U.S. via the Caribbean. Genome‐wide association studies (GWAS) narrowed several traits to regions containing strong candidate genes. For example, orthologs of the ArabidopsisFLOWERING LOCUS Tlie within a major QTL for flowering time. In summary, this diverse, yet compact cowpea collection constitutes a suitable resource to identify loci controlling complex traits, consequently providing markers to assist with breeding to improve this crop of high relevance to global food and nutritional security.

     
    more » « less
  5. Abstract A large number of genetic variations have been identified to be associated with Alzheimer’s disease (AD) and related quantitative traits. However, majority of existing studies focused on single types of omics data, lacking the power of generating a community including multi-omic markers and their functional connections. Because of this, the immense value of multi-omics data on AD has attracted much attention. Leveraging genomic, transcriptomic and proteomic data, and their backbone network through functional relations, we proposed a modularity-constrained logistic regression model to mine the association between disease status and a group of functionally connected multi-omic features, i.e. single-nucleotide polymorphisms (SNPs), genes and proteins. This new model was applied to the real data collected from the frontal cortex tissue in the Religious Orders Study and Memory and Aging Project cohort. Compared with other state-of-art methods, it provided overall the best prediction performance during cross-validation. This new method helped identify a group of densely connected SNPs, genes and proteins predictive of AD status. These SNPs are mostly expression quantitative trait loci in the frontal region. Brain-wide gene expression profile of these genes and proteins were highly correlated with the brain activation map of ‘vision’, a brain function partly controlled by frontal cortex. These genes and proteins were also found to be associated with the amyloid deposition, cortical volume and average thickness of frontal regions. Taken together, these results suggested a potential pathway underlying the development of AD from SNPs to gene expression, protein expression and ultimately brain functional and structural changes. 
    more » « less