Psocodea (booklice and parasitic lice) is an order of insects containing species with extensive mitochondrial genome rearrangements, particularly within the suborder Troctomorpha, in which some species possess an extremely fragmented mitochondrial genome with several small minichromosomes. In the remaining suborders of Psocodea, there are groups with the ancestral pancrustacean arrangement, quite extensive rearrangements (e.g. Trogiomorpha), or in which the small number of species analysed to date have rearrangements of only a few protein‐coding genes and/or tRNAs (e.g. Psocomorpha). Despite the apparent high rate of rearrangements in the order as a whole, a small number of complete mitochondrial genomes are available, especially for suborder Psocomorpha, the largest free‐living suborder. To understand the evolution of the gene arrangement of the mitochondrial genome within Psocomorpha and its phylogenetic implications, we assembled and analysed the mitochondrial genomes of 33 species of bark lice belonging to nine families in two infraorders. Within the infraorder Homilopsocidea, four families were analysed, mainly from Lachesillidae (which included 22 species of this family). Within the infraorder Caeciliusetae, seven species representing five families were analysed. Mitochondrial gene rearrangements were identified in seven of the nine families. Some of these rearrangements were unique to a single species, while some contained phylogenetic signal, being shared by related species. These rearrangements typically corresponded to transpositions and inversions of tRNAs, possibly caused by tandem duplication–random loss (TDRL) and/or recombination events. Phylogenetic analyses of mitochondrial gene sequences provided phylogenetic resolution for several branches of the tree, including monophyly of Lachesillinae. The genus
- PAR ID:
- 10345584
- Editor(s):
- Yoshizawa, Kazunori
- Date Published:
- Journal Name:
- Insect Systematics and Diversity
- Volume:
- 6
- Issue:
- 4
- ISSN:
- 2399-3421
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT Hemicaecilius Enderlein was found to be embedded within the genusLachesilla Westwood, rending the latter paraphyletic. Monophyly was also never recovered for Lachesillidae and Elipsocidae as currently defined. However, instability was observed for some higher level relationships within Psocomorpha, including the relationships among the major clades of Lachesillidae. -
Abstract Lachesillidae is one of the largest families of bark lice and includes more than 420 described species, in 26 genera and three subfamilies. This family belongs in the suborder Psocomorpha, infraorder Homilopsocidea. The classification of Lachesillidae is based on male and female genital morphologies, but questions remain regarding the monophyly of the family and some of its genera. Here, we used whole genome and transcriptome data to generate a 2060 orthologous gene data matrix of 2,438,763 aligned bp and used these data to reconstruct the phylogenetic relationships of species of Lachesillidae and relatives. Taxon sampling included 24 species from Lachesillidae and 23 additional species belonging to related families from the infraorders Homilopsocidea and Caeciliusetae. Phylogenetic relationships reconstructed with maximum likelihood and coalescent‐based analyses indicated paraphyly of Lachesillidae, and monophyly of the tribe Graphocaeciliini and the genus
Lachesilla were also never recovered. Instability was observed in the position ofEolachesilla chilensis , which was recovered either as sister to Elipsocidae or to Mesopsocidae species, so we cannot conclusively determine the position of this genus within the Homilopsocidea. Given our results, a reclassification is necessary, but more taxon sampling of other species in Mesopsocidae and Peripsocidae would be useful to add to a tree in future before proposing a new classification. -
Hemipteroid insects (Paraneoptera), with over 10% of all known insect diversity, are a major component of terrestrial and aquatic ecosystems. Previous phylogenetic analyses have not consistently resolved the relationships among major hemipteroid lineages. We provide maximum likelihood-based phylogenomic analyses of a taxonomically comprehensive dataset comprising sequences of 2,395 single-copy, protein-coding genes for 193 samples of hemipteroid insects and outgroups. These analyses yield a well-supported phylogeny for hemipteroid insects. Monophyly of each of the three hemipteroid orders (Psocodea, Thysanoptera, and Hemiptera) is strongly supported, as are most relationships among suborders and families. Thysanoptera (thrips) is strongly supported as sister to Hemiptera. However, as in a recent large-scale analysis sampling all insect orders, trees from our data matrices support Psocodea (bark lice and parasitic lice) as the sister group to the holometabolous insects (those with complete metamorphosis). In contrast, four-cluster likelihood mapping of these data does not support this result. A molecular dating analysis using 23 fossil calibration points suggests hemipteroid insects began diversifying before the Carboniferous, over 365 million years ago. We also explore implications for understanding the timing of diversification, the evolution of morphological traits, and the evolution of mitochondrial genome organization. These results provide a phylogenetic framework for future studies of the group.
-
Buckley, Thomas (Ed.)Abstract The insect order Psocodea is a diverse lineage comprising both parasitic (Phthiraptera) and nonparasitic members (Psocoptera). The extreme age and ecological diversity of the group may be associated with major genomic changes, such as base compositional biases expected to affect phylogenetic inference. Divergent morphology between parasitic and nonparasitic members has also obscured the origins of parasitism within the order. We conducted a phylogenomic analysis on the order Psocodea utilizing both transcriptome and genome sequencing to obtain a data set of 2370 orthologous genes. All phylogenomic analyses, including both concatenated and coalescent methods suggest a single origin of parasitism within the order Psocodea, resolving conflicting results from previous studies. This phylogeny allows us to propose a stable ordinal level classification scheme that retains significant taxonomic names present in historical scientific literature and reflects the evolution of the group as a whole. A dating analysis, with internal nodes calibrated by fossil evidence, suggests an origin of parasitism that predates the K-Pg boundary. Nucleotide compositional biases are detected in third and first codon positions and result in the anomalous placement of the Amphientometae as sister to Psocomorpha when all nucleotide sites are analyzed. Likelihood-mapping and quartet sampling methods demonstrate that base compositional biases can also have an effect on quartet-based methods.[Illumina; Phthiraptera; Psocoptera; quartet sampling; recoding methods.]more » « less
-
Abstract Next‐generation sequencing technologies (NGS) allow systematists to amass a wealth of genomic data from non‐model species for phylogenetic resolution at various temporal scales. However, phylogenetic inference for many lineages dominated by non‐model species has not yet benefited from NGS, which can complement Sanger sequencing studies. One such lineage, whose phylogenetic relationships remain uncertain, is the diverse, agriculturally important and charismatic Coreoidea (Hemiptera: Heteroptera). Given the lack of consensus on higher‐level relationships and the importance of a robust phylogeny for evolutionary hypothesis testing, we use a large data set comprised of hundreds of ultraconserved element (UCE) loci to infer the phylogeny of Coreoidea (excluding Stenocephalidae and Hyocephalidae), with emphasis on the families Coreidae and Alydidae. We generated three data sets by including alignments that contained loci sampled for at least 50%, 60%, or 70% of the total taxa, and inferred phylogeny using maximum likelihood and summary coalescent methods. Twenty‐six external morphological features used in relatively comprehensive phylogenetic analyses of coreoids were also re‐evaluated within our molecular phylogenetic framework. We recovered 439–970 loci per species (16%–36% of loci targeted) and combined this with previously generated UCE data for 12 taxa. All data sets, regardless of analytical approach, yielded topologically similar and strongly supported trees, with the exception of outgroup relationships and the position of Hydarinae. We recovered a monophyletic Coreoidea, with Rhopalidae highly supported as the sister group to Alydidae + Coreidae. Neither Alydidae nor Coreidae were monophyletic; the coreid subfamilies Hydarinae and Pseudophloeinae were recovered as more closely related to Alydidae than to other coreid subfamilies. Coreinae were paraphyletic with respect to Meropachyinae. Most morphological traits were homoplastic with several clades defined by few, if any, synapomorphies. Our results demonstrate the utility of phylogenomic approaches in generating robust hypotheses for taxa with long‐standing phylogenetic problems and highlight that novel insights may come from such approaches.