skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Human-Centered Intelligent Training for Emergency Responders
Emergency response (ER) workers perform extremely demanding physical and cognitive tasks that can result in serious injuries and loss of life. Human augmentation technologies have the potential to enhance physical and cognitive work-capacities, thereby dramatically transforming the landscape of ER work, reducing injury risk, improving ER, as well as helping attract and retain skilled ER workers. This opportunity has been significantly hindered by the lack of high-quality training for ER workers that effectively integrates innovative and intelligent augmentation solutions. Hence, new ER learning environments are needed that are adaptive, affordable, accessible, and continually available for reskilling the ER workforce as technological capabilities continue to improve. This article presents the research considerations in the design and integration of use-inspired exoskeletons and augmented reality technologies in ER processes and the identification of unique cognitive and motor learning needs of each of these technologies in context-independent and ER-relevant scenarios. We propose a human-centered artificial intelligence (AI) enabled training framework for these technologies in ER. Finally, how these human-centered training requirements for nascent technologies are integrated in an intelligent tutoring system that delivers across tiered access levels, covering the range of virtual, to mixed, to physical reality environments, is discussed.  more » « less
Award ID(s):
2033592
PAR ID:
10342005
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
AI Magazine
Volume:
43
Issue:
1
ISSN:
0738-4602
Page Range / eLocation ID:
83 to 92
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rapid evolution of modern manufacturing systems is driven by the integration of emerging metaverse technologies such as artificial intelligence (AI), digital twin (DT), and different forms of extended reality (XR) like virtual reality (VR), augmented reality (AR), and mixed reality (MR). These advances confront manufacturing workers with complex and evolving environments that demand digital literacy for problem solving in the future workplace. However, manufacturing industry faces a critical shortage of skilled workforce with digital literacy in the world. Further, global pandemic has significantly changed how people work and collaborate digitally and remotely. There is an urgent need to rethink digital platformization and leverage emerging technologies to propel industrial evolution toward human-centered manufacturing metaverse (MfgVerse). This paper presents a forward-looking perspective on the development of MfgVerse, highlighting current efforts in learning factory, cognitive digital twinning, and the new sharing economy of manufacturing-as-a-service (MaaS). MfgVerse is converging into multiplex networks, including a social network of human stakeholders, an interconnected network of manufacturing things or agents (e.g., machines, robots, facilities, material handling systems), a network of digital twins of physical things, as well as auxiliary networks of sales, supply chain, logistics, and remanufacturing systems. We also showcase the design and development of a virtual learning factory for workforce training. Finally, future directions, challenges, and opportunities are discussed for human-centered manufacturing metaverse. We hope this work helps stimulate more comprehensive studies and in-depth research efforts to advance MfgVerse technologies. 
    more » « less
  2. The utilization of remote operated vehicles (ROVs) has become essential across various subsea industries, such as oil and gas exploration and offshore wind energy, yet significant challenges remain in achieving effective human-ROV interaction. Despite advancements, ROV operations are hindered by complex control systems, high physical and cognitive demands on pilots, and a lack of sensory feedback mechanisms that fully convey the underwater environment’s dynamics. This study addresses these gaps by surveying ROV pilots and industry stakeholders to identify prevalent operational challenges, essential skills, and perspectives on integrating novel teleoperation technologies, including mixed reality and haptic feedback. Findings reveal a strong industry interest in technologies that enhance situational awareness and ease control demands, although concerns remain regarding practical integration and operator fatigue. By highlighting the critical skills required and potential benefits of human-centered augmentation systems, this study provides insights to inform future ergonomic designs, training frameworks, and technology development aimed at advancing safe and effective ROV teleoperation. 
    more » « less
  3. Background: Over the past two decades, the use of Metaverse-enhanced simulations in medical education has witnessed significant advancement. These simulations offer immersive environments and technologies, such as augmented reality, virtual reality, and artificial intelligence that have the potential to revolutionize medical training by providing realistic, hands-on experiences in diagnosing and treating patients, practicing surgical procedures, and enhancing clinical decision-making skills. This scoping review aimed to examine the evolution of simulation technology and the emergence of metaverse applications in medical professionals' training, guided by Friedman's three dimensions in medical education: physical space, time, and content, along with an additional dimension of assessment. Methods: In this scoping review, we examined the related literature in six major databases including PubMed, EMBASE, CINAHL, Scopus, Web of Science, and ERIC. A total of 173 publications were selected for the final review and analysis. We thematically analyzed these studies by combining Friedman's three-dimensional framework with assessment. Results: Our scoping review showed that Metaverse technologies, such as virtual reality simulation and online learning modules have enabled medical education to extend beyond physical classrooms and clinical sites by facilitating remote training. In terms of the Time dimension, simulation technologies have made partial but meaningful progress in supplementing traditional time-dependent curricula, helping to shorten learning curves, and improve knowledge retention. As for the Content dimension, high-quality simulation and metaverse content require alignment with learning objectives, interactivity, and deliberate practice that should be developmentally integrated from basic to advanced skills. With respect to the Assessment dimension, learning analytics and automated metrics from metaverse-enabled simulation systems have enhanced competency evaluation and formative feedback mechanisms. However, their integration into high-stakes testing is limited, and qualitative feedback and human observation remain crucial. Conclusion: Our study provides an updated perspective on the achievements and limitations of using simulation to transform medical education, offering insights that can inform development priorities and research directions for human-centered, ethical metaverse applications that enhance healthcare professional training. 
    more » « less
  4. Augmented Reality (AR) technologies present an exciting new medium for human-robot interactions, enabling new opportunities for both implicit and explicit human-robot communication. For example, these technologies enable physically-limited robots to execute non-verbal interaction patterns such as deictic gestures despite lacking the physical morphology necessary to do so. However, a wealth of HRI research has demonstrated real benefits to physical embodiment (compared to, e.g., virtual robots on screens), suggesting AR augmentation of virtual robot parts could face challenges.In this work, we present empirical evidence comparing the use of virtual (AR) and physical arms to perform deictic gestures that identify virtual or physical referents. Our subjective and objective results demonstrate the success of mixed reality deictic gestures in overcoming these potential limitations, and their successful use regardless of differences in physicality between gesture and referent. These results help to motivate the further deployment of mixed reality robotic systems and provide nuanced insight into the role of mixed-reality technologies in HRI contexts. 
    more » « less
  5. Training and on-site assistance is critical to help workers master required skills, improve worker productivity, and guarantee the product quality. Traditional training methods lack worker-centered considerations that are particularly in need when workers are facing ever changing demands. In this study, we propose a worker-centered training & assistant system for intelligent manufacturing, which is featured with self-awareness and active-guidance. Multi-modal sensing techniques are applied to perceive each individual worker and a deep learning approach is developed to understand the worker’s behavior and intention. Moreover, an object detection algorithm is implemented to identify the parts/tools the worker is interacting with. Then the worker’s current state is inferred and used for quantifying and assessing the worker performance, from which the worker’s potential guidance demands are analyzed. Furthermore, onsite guidance with multi-modal augmented reality is provided actively and continuously during the operational process. Two case studies are used to demonstrate the feasibility and great potential of our proposed approach and system for applying to the manufacturing industry for frontline workers. 
    more » « less