skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tropicalization of graph profiles
A graph profile records all possible densities of a fixed finite set of graphs. Profiles can be extremely complicated; for instance the full profile of any triple of connected graphs is not known, and little is known about hypergraph profiles. We introduce the tropicalization of graph and hypergraph profiles. Tropicalization is a well-studied operation in algebraic geometry, which replaces a variety (the set of real or complex solutions to a finite set of algebraic equations) with its “combinatorial shadow”. We prove that the tropicalization of a graph profile is a closed convex cone, which still captures interesting combinatorial information. We explicitly compute these tropicalizations for arbitrary sets of complete and star hypergraphs. We show they are rational polyhedral cones even though the corresponding profiles are not even known to be semialgebraic in some of these cases. We then use tropicalization to prove strong restrictions on the power of the sums of squares method, equivalently Cauchy-Schwarz calculus, to test (which is weaker than certification) the validity of graph density inequalities. In particular, we show that sums of squares cannot test simple binomial graph density inequalities, or even their approximations. Small concrete examples of such inequalities are presented, and include the famous Blakley-Roy inequalities for paths of odd length. As a consequence, these simple inequalities cannot be written as a rational sum of squares of graph densities.  more » « less
Award ID(s):
1901950
PAR ID:
10342024
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Transactions of the American Mathematical Society
ISSN:
0002-9947
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Given a $$k$$-uniform hypergraph $$H$$ on $$n$$ vertices, an even cover in $$H$$ is a collection of hyperedges that touch each vertex an even number of times. Even covers are a generalization of cycles in graphs and are equivalent to linearly dependent subsets of a system of linear equations modulo $$2$$. As a result, they arise naturally in the context of well-studied questions in coding theory and refuting unsatisfiable $$k$$-SAT formulas. Analogous to the irregular Moore bound of Alon, Hoory, and Linial [3], Feige conjectured [8] an extremal trade-off between the number of hyperedges and the length of the smallest even cover in a $$k$$-uniform hypergraph. This conjecture was recently settled up to a multiplicative logarithmic factor in the number of hyperedges [12, 13]. These works introduce the new technique that relates hypergraph even covers to cycles in the associated Kikuchi graphs. Their analysis of these Kikuchi graphs, especially for odd $$k$$, is rather involved and relies on matrix concentration inequalities. In this work, we give a simple and purely combinatorial argument that recovers the best-known bound for Feige’s conjecture for even $$k$$. We also introduce a novel variant of a Kikuchi graph which together with this argument improves the logarithmic factor in the best-known bounds for odd $$k$$. As an application of our ideas, we also give a purely combinatorial proof of the improved lower bounds [4] on 3-query binary linear locally decodable codes. 
    more » « less
  2. Recently, several classes of cutting planes have been introduced for binary polynomial optimization. In this paper, we present the first results connecting the combinatorial structure of these inequalities with their Chvátal rank. We determine the Chvátal rank of all known cutting planes and show that almost all of them have Chvátal rank 1. We observe that these inequalities have an associated hypergraph that is β-acyclic. Our second goal is to derive deeper cutting planes; to do so, we consider hypergraphs that admit β-cycles. We introduce a novel class of valid inequalities arising from odd β-cycles, that generally have Chvátal rank 2. These inequalities allow us to obtain the first characterization of the multilinear polytope for hypergraphs that contain β-cycles. Namely, we show that the multilinear polytope for cycle hypergraphs is given by the standard linearization inequalities, flower inequalities, and odd β-cycle inequalities. We also prove that odd β-cycle inequalities can be separated in linear time when the hypergraph is a cycle hypergraph. This shows that instances represented by cycle hypergraphs can be solved in polynomial time. Last, to test the strength of odd β-cycle inequalities, we perform numerical experiments that imply that they close a significant percentage of the integrality gap. 
    more » « less
  3. Abstract Let $$K$$ be a real closed field with a nontrivial non-archimedean absolute value. We study a refined version of the tropicalization map, which we call real tropicalization map, that takes into account the signs on $$K$$. We study images of semialgebraic subsets of $K^n$ under this map from a general point of view. For a semialgebraic set $$S \subseteq K^n$$ we define a space $$S_r^{{\operatorname{an}}}$$ called the real analytification, which we show to be homeomorphic to the inverse limit of all real tropicalizations of $$S$$. We prove a real analogue of the tropical fundamental theorem and show that the tropicalization of any semialgebraic set is described by tropicalization of finitely many inequalities, which are valid on the semialgebraic set. We also study the topological properties of real analytification and tropicalization. If $$X$$ is an algebraic variety, we show that $$X_r^{{\operatorname{an}}}$$ can be canonically embedded into the real spectrum $$X_r$$ of $$X$$, and we study its relation with the Berkovich analytification of $$X$$. 
    more » « less
  4. Abstract In this paper, we investigate the degree ofh-polynomials of edge ideals of finite simple graphs. In particular, we provide combinatorial formulas for the degree of theh-polynomial for various fundamental classes of graphs such as paths, cycles, and bipartite graphs. To the best of our knowledge, this study represents the first investigation into the combinatorial interpretation of this algebraic invariant. Additionally, we characterize all connected graphs in which the sum of the Castelnuovo–Mumford regularity and the degree of theh-polynomial of an edge ideal achieve its maximum value, equal to the number of vertices in the graph. 
    more » « less
  5. We study combinatorial inequalities for various classes of set systems: matroids, polymatroids, poset antimatroids, and interval greedoids. We prove log-concave inequal- ities for counting certain weighted feasible words, which generalize and extend several previous results establishing Mason conjectures for the numbers of independent sets of matroids. Notably, we prove matching equality conditions for both earlier inequalities and our extensions. In contrast with much of the previous work, our proofs are combinatorial and employ nothing but linear algebra. We use the language formulation of greedoids which allows a linear algebraic setup, which in turn can be analyzed recursively. The underlying non- commutative nature of matrices associated with greedoids allows us to proceed beyond polymatroids and prove the equality conditions. As further application of our tools, we rederive both Stanley’s inequality on the number of certain linear extensions, and its equality conditions, which we then also extend to the weighted case. 
    more » « less