This paper develops a new approach for estimating an interpretable, relational model of a black-box autonomous agent that can plan and act. Our main contributions are a new paradigm for estimating such models using a rudimentary query interface with the agent and a hierarchical querying algorithm that generates an interrogation policy for estimating the agent's internal model in a user-interpretable vocabulary. Empirical evaluation of our approach shows that despite the intractable search space of possible agent models, our approach allows correct and scalable estimation of interpretable agent models for a wide class of black-box autonomous agents. Our results also show that this approach can use predicate classifiers to learn interpretable models of planning agents that represent states as images.
more »
« less
Differential Assessment of Black-Box AI Agents
Much of the research on learning symbolic models of AI agents focuses on agents with stationary models. This assumption fails to hold in settings where the agent's capabilities may change as a result of learning, adaptation, or other post-deployment modifications. Efficient assessment of agents in such settings is critical for learning the true capabilities of an AI system and for ensuring its safe usage. In this work, we propose a novel approach to differentially assess black-box AI agents that have drifted from their previously known models. As a starting point, we consider the fully observable and deterministic setting. We leverage sparse observations of the drifted agent's current behavior and knowledge of its initial model to generate an active querying policy that selectively queries the agent and computes an updated model of its functionality. Empirical evaluation shows that our approach is much more efficient than re-learning the agent model from scratch. We also show that the cost of differential assessment using our method is proportional to the amount of drift in the agent's functionality.
more »
« less
- Award ID(s):
- 1909370
- PAR ID:
- 10342043
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 36
- Issue:
- 9
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 9868 to 9876
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An overarching goal of Artificial Intelligence (AI) is creating autonomous, social agents that help people. Two important challenges, though, are that different people prefer different assistance from agents and that preferences can change over time. Thus, helping behaviors should be tailored to how an individual feels during the interaction. We hypothesize that human nonverbal behavior can give clues about users' preferences for an agent's helping behaviors, augmenting an agent's ability to computationally predict such preferences with machine learning models. To investigate our hypothesis, we collected data from 194 participants via an online survey in which participants were recorded while playing a multiplayer game. We evaluated whether the inclusion of nonverbal human signals, as well as additional context (e.g., via game or personality information), led to improved prediction of user preferences between agent behaviors compared to explicitly provided survey responses. Our results suggest that nonverbal communication -- a common type of human implicit feedback -- can aid in understanding how people want computational agents to interact with them.more » « less
-
Lifelong learning, which refers to an agent's ability to continuously learn and enhance its performance over its lifespan, is a significant challenge in artificial intelligence (AI), that biological systems tackle efficiently. This challenge is further exacerbated when AI is deployed in untethered environments with strict energy and latency constraints. We take inspiration from neural plasticity and investigate how to leverage and build energy-efficient lifelong learning machines. Specifically, we study how a combination of neural plasticity mechanisms, namely neuromodulation, synaptic consolidation, and metaplasticity, enhance the continual learning capabilities of AI models. We further co-design architectures that leverage compute-in-memory topologies and sparse spike-based communication with quantization for the edge. Aspects of this co-design can be transferred to federated lifelong learning scenarios.more » « less
-
We study a model-free federated linear quadratic regulator (LQR) problem where M agents with unknown, distinct yet similar dynamics collaboratively learn an optimal policy to minimize an average quadratic cost while keeping their data private. To exploit the similarity of the agents' dynamics, we propose to use federated learning (FL) to allow the agents to periodically communicate with a central server to train policies by leveraging a larger dataset from all the agents. With this setup, we seek to understand the following questions: (i) Is the learned common policy stabilizing for all agents? (ii) How close is the learned common policy to each agent's own optimal policy? (iii) Can each agent learn its own optimal policy faster by leveraging data from all agents? To answer these questions, we propose a federated and model-free algorithm named FedLQR. Our analysis overcomes numerous technical challenges, such as heterogeneity in the agents' dynamics, multiple local updates, and stability concerns. We show that FedLQR produces a common policy that, at each iteration, is stabilizing for all agents. We provide bounds on the distance between the common policy and each agent's local optimal policy. Furthermore, we prove that when learning each agent's optimal policy, FedLQR achieves a sample complexity reduction proportional to the number of agents M in a low-heterogeneity regime, compared to the single-agent setting.more » « less
-
Information sharing among agents to jointly solve problems is challenging for multi-agent reinforcement learning algorithms (MARL) in smart environments. In this paper, we present a novel information sharing approach for MARL, which introduces a Team Information Matrix (TIM) that integrates scenario-independent spatial and environmental information combined with the agent's local observations, augmenting both individual agent's performance and global awareness during the MARL learning. To evaluate this approach, we conducted experiments on three multi-agent scenarios of varying difficulty levels implemented in Unity ML-Agents Toolkit. Experimental results show that the agents utilizing our TIM-Shared variation outperformed those using decentralized MARL and achieved comparable performance to agents employing centralized MARL.more » « less
An official website of the United States government

