The Pampas of Argentina contain a broad distribution of Pleistocene to Holocene loessic sediments and eolian dune deposits. Models describing the sediment provenance of this eolian system have, at times, conflicted. We address the provenance of these deposits through U-Pb detrital-zircon geochronology. Our results indicate broad similarity in age distributions between samples, with a dominant Permian-Triassic mode, and widespread but lesser Cenozoic, Devonian-Mississippian, Ediacaran-Cambrian, and Mesoproterozoic modes. These data are inconsistent with a large contribution of detritus from Patagonia as previously suggested. These data are consistent with very limited contribution of first cycle volcanogenic zircon to the Pampean eolian system, but abundances of older Neogene zircon indicate proto-sources in the Andes. The ríos Desaguadero, Colorado, and Negro contain populations that were likely within the dust production pathways of most of the loess, paleosol, and eolian dune deposits, but the derivation of the zircon ages in these sediments cannot be explained solely by these river systems. One statistical outlier, a loess sample from the Atlantic coast of the Pampa region, indicates quantitative similarity to the age spectra from the ríos Colorado and Negro, consistent with derivation from these subparallel rivers systems during subaerial exposure of the continental shelf under high global ice-volume. Another statistical outlier, a paleosol sample from the Río Paraná delta region, has zircon ages more closely associated with sediments in the Paraná region than in rivers south of the Pampa region. Collectively, these data point to the complexity of the Pampean eolian system and substantial spatial-temporal variation in this Pleistocene−Holocene eolian system.
more »
« less
A First Look at the Dust Production Pathways of the Southern South American Pleistocene Loess Using Detrital Zircon Geochronology
Quaternary dust production in southern South America is of particular interest because of its impacts on the global radiative forcing budget and on ocean chemistry. Characterizing dust production and delivery pathways is fundamental for understanding how dust-climate feedbacks in this region operate. A Holocene centered view of South American dust production emphases hyper arid basins on the Puna-Altiplano Plateau and the glaciated terrains of Patagonia as primary dust sources. Applying this Holocene-centric view to Pleistocene glacial-stadial period dust production is problematic as it largely ignores how glacial-inter-glacial variability impacts surficial processes and regional humidity, and thus dust production and transport. We sampled fluvial, loess and eolian dune deposits from central Argentina for U-Pb detrital zircon analysis in order better understand Pleistocene-Holocene dust production pathways and assess the relative importance of Andean rivers and dunes fields of the Pampa Plains as dust sources. Our data indicate that rivers draining the Andes south of the Pampa Plains and large vegetation-stabilized dune fields could have played a fundamental role in late Pleistocene glacial and stadial period dust production. If valid, dust production in this manner is at odds with the Holocene-centric view of South American dust production.
more »
« less
- Award ID(s):
- 1911340
- PAR ID:
- 10342071
- Date Published:
- Journal Name:
- American Geophysical Union, Fall Meeting 2019
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Pampas of Argentina contain a broad distribution of Pleistocene to Holocene loessic sediments and eolian dune deposits. Models describing the sediment provenance of this eolian system have, at times, conflicted. We address the provenance of these deposits through U-Pb detrital-zircon geochronology. Our results indicate broad similarity in age distributions between samples, with a dominant Permian-Triassic mode, and widespread but lesser Cenozoic, Devonian-Mississippian, Ediacaran-Cambrian, and Mesoproterozoic modes. These data are inconsistent with a large contribution of detritus from Patagonia as previously suggested. These data are consistent with very limited contribution of first cycle volcanogenic zircon to the Pampean eolian system, but abundances of older Neogene zircon indicate proto-sources in the Andes. The ríos Desaguadero, Colorado, and Negro contain populations that were likely within the dust production pathways of most of the loess, paleosol, and eolian dune deposits, but the derivation of the zircon ages in these sediments cannot be explained solely by these river systems. One statistical outlier, a loess sample from the Atlantic coast of the Pampa region, indicates quantitative similarity to the age spectra from the ríos Colorado and Negro, consistent with derivation from these subparallel rivers systems during subaerial exposure of the continental shelf under high global ice-volume. Another statistical outlier, a paleosol sample from the Río Paraná delta region, has zircon ages more closely associated with sediments in the Paraná region than in rivers south of the Pampa region. Collectively, these data point to the complexity of the Pampean eolian system and substantial spatial-temporal variation in this Pleistocene−Holocene eolian system.more » « less
-
South America, from southernmost Bolivia through central Argentina, contains a useful Late Miocene to Holocene record of eolian sedimentation that can be used to advance our understanding of atmospheric circulation and dust production pathways over that interval. Our research indicates that loess provinces in the eastern Andes, Chaco Plains, and Pampean Plains had quasi-independent dust production pathways. A summary of our findings is as follows. 1) Detrital zircon crystals in the high-elevation upper Pleistocene loess deposits in the eastern Andes area of Tafí del Valle were primarily derived from the Puna Plateau to the west. At a latitude of ~27° S, this necessitates a several-degree equatorward shift in the upper- and lower-level westerlies during intervals with high dust accumulation in Tafí del Valle. 2) Upper Pleistocene to Holocene eolian sand deposits of the Pampean Sand Sea and loessic strata in the central and eastern Pampas contain detrital zircon U-Pb age spectra indicating derivation from the Río Desaguadero, Río Colorado, and Río Negro which drain the central Andes. Although the present-day Puna-Altiplano Plateau is hyperarid, the presence of major Argentine river systems in the dust production pathways of the Pampas is important for identifying the relative importance of precipitation and river courses on dust production, which parallels the relationship between the Yellow River and Chinese Loess Plateau in East Asia. 3) Upper Miocene strata of the Cerro Azul Formation, deposited between ~8.9 and ~5.5 Ma, include loess and aggradational paleosols. These eolian strata yield detrital zircon U-Pb age spectra that are consistent with the present-day Río Colorado and Río Negro, and similar to the Upper Pleistocene to Holocene deposits of the Pampas. This suggests a Late Miocene establishment of the Pampean eolian system. Interestingly, the Pampean eolian system and Chinese Loess Plateau both cover the same latitudes (~33°-39°) but in different hemispheres, and both were established at roughly the same time during the Late Miocene. These observations point to bihemispheric intensification of Hadley circulation in forcing the establishment of these two large eolian provinces.more » « less
-
Abstract. The continuous ice core record extends 800 000 years into the past, covering the period of 100 000-year glacial cycles but not the transition from 40 000-year glacial cycles (the mid-Pleistocene transition, 1.2–0.7 million years ago). A primary goal of the International Partnerships in Ice Core Sciences is therefore to retrieve a 1.5-million-year-old continuous ice core, increasing our understanding of this major change in the climate system and thus of fundamental climate forcings and feedbacks. However, complex glacial processes, limited bedrock data, and young basal ice in previous cores necessitate careful reconnaissance studies before extracting a full core. Ice borehole optical logging reflects the ice dust content and may be used to date ice quickly and inexpensively if a reference record is known. Here we explore the relationship between ice dust records and well-dated marine dust records from sediment cores in the southern Atlantic and Pacific oceans, which lie along paths of dust sources to Antarctica. We evaluate how representative these records are of Antarctic dust both through the existing ice core record and during the older target age range, suggesting that a newly published 1.5-million-year record from Site U1537 near South America is likely the most robust predictor of the Oldest Ice dust signal. We then assess procedures for rapid dating of potential Oldest Ice sites, noting that the ability to detect dating errors is an essential feature. We emphasize that ongoing efforts to identify, recover, date, and interpret an Oldest Ice core should use care to avoid unfounded assumptions about the 40 kyr world based on the 100 kyr world.more » « less
-
none (Ed.)Abstract The termination of the last glacial period is marked by the northward migration of the ITCZ and the weakening of the South American Summer Monsoon (SASM). The transition between the wetter glacial period and the more arid Holocene period across the South American continent is punctuated by several abrupt millennial-scale tropical hydroclimatic events. While the Northern Hemisphere temperature forcing of these millennial-scale events is generally accepted, recently, equatorial forcing mechanisms have been put forward. In particular, the dipole between northeastern Brazil and the western Andes of Peru is absent during Heinrich 1, with wet conditions recorded in both regions. To explain this anomalous atmospheric behavior, researchers have suggested changes in the ENSO and Walker circulation over South America and questioned whether the ‘amount effect’ relationship between δ18O and precipitation persists through time. To better resolve tropical hydroclimate changes over the last glacial termination, more robust paleoclimate proxies are needed. Here, we present a new paleo-precipitation reconstruction based on trace metal (Mg/Ca, Sr/Ca, and Ba/Ca) and isotope (δ18O and δ13C) speleothem records from Antipayarguna cave in the Peruvian Andes (3800 masl). Our records date from 2,600 to 4,700 and 7,700 to 19,000 years BP, with an average age resolution of 44 years. These records overlap the previously published speleothem records from nearby Pacupahuain and Huagapo caves. The Antipayarguna δ18O data are highly correlated with southern hemisphere summer insolation and the Huascaran ice core δ18O record. The Antipayarguna trace metal ratios and δ18O isotope values correlate well over most of the record, suggesting that the δ18O at our site reflects the amount of local precipitation. However, at the end of the Younger Dryas (11.5-10.3 ka) and Heinrich Stadial 1 (16.4-14.9 ka), there is a decoupling of these proxies. These anomalies may be due to changes in δ18O caused by shifts in moisture source region or precipitation condensation factors (e.g. convergence level or subcloud evaporation). Alternatively, this could be due to a change in trace metal sources. We explore potential causes for these brief decoupling events through comparison with other paleoclimate records.more » « less
An official website of the United States government

