skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 9, 2025

Title: Stalagmite Records of Hydroclimate from the Peruvian Andes During the Last Deglaciation
Abstract The termination of the last glacial period is marked by the northward migration of the ITCZ and the weakening of the South American Summer Monsoon (SASM). The transition between the wetter glacial period and the more arid Holocene period across the South American continent is punctuated by several abrupt millennial-scale tropical hydroclimatic events. While the Northern Hemisphere temperature forcing of these millennial-scale events is generally accepted, recently, equatorial forcing mechanisms have been put forward. In particular, the dipole between northeastern Brazil and the western Andes of Peru is absent during Heinrich 1, with wet conditions recorded in both regions. To explain this anomalous atmospheric behavior, researchers have suggested changes in the ENSO and Walker circulation over South America and questioned whether the ‘amount effect’ relationship between δ18O and precipitation persists through time. To better resolve tropical hydroclimate changes over the last glacial termination, more robust paleoclimate proxies are needed. Here, we present a new paleo-precipitation reconstruction based on trace metal (Mg/Ca, Sr/Ca, and Ba/Ca) and isotope (δ18O and δ13C) speleothem records from Antipayarguna cave in the Peruvian Andes (3800 masl). Our records date from 2,600 to 4,700 and 7,700 to 19,000 years BP, with an average age resolution of 44 years. These records overlap the previously published speleothem records from nearby Pacupahuain and Huagapo caves. The Antipayarguna δ18O data are highly correlated with southern hemisphere summer insolation and the Huascaran ice core δ18O record. The Antipayarguna trace metal ratios and δ18O isotope values correlate well over most of the record, suggesting that the δ18O at our site reflects the amount of local precipitation. However, at the end of the Younger Dryas (11.5-10.3 ka) and Heinrich Stadial 1 (16.4-14.9 ka), there is a decoupling of these proxies. These anomalies may be due to changes in δ18O caused by shifts in moisture source region or precipitation condensation factors (e.g. convergence level or subcloud evaporation). Alternatively, this could be due to a change in trace metal sources. We explore potential causes for these brief decoupling events through comparison with other paleoclimate records.  more » « less
Award ID(s):
2102996
PAR ID:
10615405
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
2024 Fall Meeting, AGU
Date Published:
Subject(s) / Keyword(s):
speleothem paleoclimatology
Format(s):
Medium: X
Location:
Washington DC
Sponsoring Org:
National Science Foundation
More Like this
  1. For the past few decades, many researchers have sought to understand how tropical hydroclimate responds to climate change via lakes, marine sediments, and speleothems records. Speleothem δ18O records throughout South America have shown that regional rainfall responds to Northern Hemisphere forcing on the millennial scale. Areas under the influence of the South Atlantic Convergence Zone (SACZ) have also shown a close relationship with local insolation on longer timescales. However, apart from the Cruz et al. (2007) record in Southern Brazil, long-term speleothem records throughout the continent have relied primarily on stable oxygen isotopes and are therefore limited to describing large-scale regional variability in rainfall. As such, many areas in South America still lack long-term records of local hydroclimate, which is critical to understanding how different components of the monsoon system respond to orbital and millennial-scale climate change. One proxy that has gained more attention in recent years is trace metal-to-calcium ratios (TM/Ca). Sr, Mg, and Ba to Ca ratios in speleothems are known in certain situations to respond to the degree of Prior Calcite Precipitation (PCP) above a drip site, a phenomenon directly tied to local aridity. In this study, we have obtained high-resolution TM/Ca measurements to pair with stable isotopes from samples spanning 23 to 66 ka from Huagapo Cave in the Peruvian Andes (11.27°S; 75.79°W). TM/Ca ratios in these samples are strongly correlated (R2>0.89), making them suitable for use as PCP proxies. We see that decreases in δ18O during Heinrich events are accompanied by a drop in TM/Ca. The period defined by the MIS 4/3 transition is accompanied by a simultaneous increase in TM/Ca and δ18O. TM/Ca and δ18O negatively correlate with local insolation for the entire record. Interestingly, the Paraíso Cave record from the Amazon Basin shows no correlation between regional or local hydroclimate and insolation during the last glacial period. The discrepancy between the two records and the close relationship between TM/Ca, δ18O, and local insolation in Huagapo samples, may call for a revised interpretation of Andes speleothem δ18O variability, which was originally thought to reflect rainout over the Amazon Basin. 
    more » « less
  2. Glacial-interglacial transitions and abrupt millennial-scale events are the most prominent features in many paleoclimate records. Understanding these oscillations requires high-resolution time series from multiple locations to constrain the latitudinal response to forcings. Few high-resolution records exist from the Southern Hemisphere tropics that predate the last two glaciations. We present a high-resolution speleothem oxygen and carbon isotope record from Huagapo Cave in the Central Peruvian Andes covering Marine Isotope Stage (MIS) 8 glacial and MIS 9 interglacial (339 to 249 ka). Uranium-series dates on three stalagmites (n=18) with small age uncertainty ±1% allows us to resolve abrupt climate events similar in structure and duration to Dansgaard-Oescchger and Heinrich events. The South American Summer Monsoon (SASM) controls modern hydroclimate variability in the Andes, and previous records from Huagapo Cave have provided records of past SASM variability. Termination three (T-III) in our record has a steep increase in δ18O values of 5‰, punctuated by two stadial event decreases of ~3‰ (S8.1 and S8.2). This pattern is mirrored in the δ13C record, indicating that these millennial-scale events record hydroclimate and vegetation productivity changes. The same structure as our T-III record is found in other records globally, where they are noted to be Heinrich-like events. Frequency analysis indicates that the occurrence of these abrupt events changes between glacial cycles. Precession is weakly expressed in the δ18O record during MIS 8; similar to speleothem records from the region dating to the Last Glacial Maximum (LGM). Global ice cover and sea levels were similar in the LGM and MIS 8, but the Milankovitch insolation forcing differed. This change in SASM behavior is not observed in the East Asian monsoon, where the precession signal is dominant throughout. Interglacial precessional control is apparent during the latter half of MIS 9 and during Huagapo Cave intervals dating to MIS 6 and 7. These data indicate that the response to high-latitude forcing in the Southern Hemisphere tropics fluctuates through time, and potential explanations for low-latitude sensitivity to forcing factors are further explored. 
    more » « less
  3. Abstract Oxygen isotope speleothems have been widely used to infer past climate changes over tropical South America (TSA). However, the spatial patterns of the millennial precipitation and precipitationδ18O (δ18Op) response have remained controversial, and their response mechanisms are unclear. In particular, it is not clear whether the regional precipitation represents the intensity of the millennial South American summer monsoon (SASM). Here, we study the TSA hydroclimate variability during the last deglaciation (20–11 ka ago) by combining transient simulations of an isotope-enabled Community Earth System Model (iCESM) and the speleothem records over the lowland TSA. Our model reasonably simulates the deglacial evolution of hydroclimate variables and water isotopes over the TSA, albeit underestimating the amplitude of variability. North Atlantic meltwater discharge is the leading factor driving the TSA’s millennial hydroclimate variability. The spatial pattern of both precipitation andδ18Opshow a northwest–southeast dipole associated with the meridional migration of the intertropical convergence zone, instead of a continental-wide coherent change as inferred in many previous works on speleothem records. The dipole response is supported by multisource paleoclimate proxies. In response to increased meltwater forcing, the SASM weakened (characterized by a decreased low-level easterly wind) and consequently reduced rainfall in the western Amazon and increased rainfall in eastern Brazil. A similar dipole response is also generated by insolation, ice sheets, and greenhouse gases, suggesting an inherent stability of the spatial characteristics of the SASM regardless of the external forcing and time scales. Finally, we discuss the potential reasons for the model–proxy discrepancy and pose the necessity to build more paleoclimate proxy data in central-western Amazon. Significance StatementWe want to reconcile the controversy on whether there is a coherent or heterogeneous response in millennial hydroclimate over tropical South America and to clearly understand the forcing mechanisms behind it. Our isotope-enabled transient simulations fill the gap in speleothem reconstructions to capture a complete picture of millennial precipitation/δ18Opand monsoon intensity change. We highlight a heterogeneous dipole response in precipitation andδ18Opon millennial and orbital time scales. Increased meltwater discharge shifts ITCZ southward and favors a wet condition in coastal Brazil. Meanwhile, the low-level easterly and the summer monsoon intensity reduced, causing a dry condition in the central-western Amazon. However, the millennial variability of hydroclimate response is underestimated in our model, together with the lack of direct paleoclimate proxies in the central-west Amazon, complicating the interpretation of changes in specific paleoclimate events and posing a challenge to constraining the spatial range of the dipole. Therefore, we emphasize the necessity to increase the source of proxies, enhance proxy interpretations, and improve climate model performance in the future. 
    more » « less
  4. In the past decade, Huagapo and Pacupahuain Caves in the Central Peruvian Andes have become sources of speleothem oxygen isotope (δ18O) paleoclimate records. These studies identify the South American Summer Monsoon (SASM) as the main climate system controlling δ18O variability. While this interpretation is verified through inter-proxy record comparisons on millennial scales, interpretation of the high-resolution variability within these records is limited by a lack of modern proxy calibration studies at these sites. Here we present results from a modern cave monitoring study undertaken to address the controls on the δ18O values of precipitation at these sites and how surface and in-cave processes affect the δ18O value of speleothem calcite. Speleothem calcite δ18O values reflect an integrated signal of atmospheric processes (e.g., rainout, Raleigh distillation, upstream moisture recycling, changes in moisture source), evaporation and mixing during infiltration in the soil and epikarst, and in-cave processes such as degassing and evaporation. In consideration of these factors, we compare isotope trends in precipitation, cave drip water and modern farmed calcite from the two cave sites. We find that precipitationδ18O values during peak monsoon activity (January -February) shows considerable inter-annual variation with averages of -16.7‰ for 2020, -18.5‰ for 2021 and -13.8‰ in 2022. We investigate the source of this variability in regional atmospheric circulation patterns using weather station data and back trajectories. The mean annual precipitation (MAP) from outside Huagapo Cave is δ18O = -15.5+/- 6‰, while seasonal samples of drip water δ18O = -14.5+/- 1‰, are offset from MAP possibly due to evaporation during infiltration. Cave drip waterδ18O has low variability over inter-annual and seasonal timescales indicating homogenization in the epikarst. Using geochemical and sensor data (e.g. cave relative humidity, temperature, and drip rate) as inputs for a karst based forward model, we simulate modern speleothem δ18O to quantitatively assess the combined effects of hydroclimate processes integration to the isotope record. 
    more » « less
  5. Oxygen isotopes (δ18O) are the most commonly utilized speleothem proxy and have provided many foundational records of paleoclimate. Thus, understanding processes affecting speleothem δ18O is crucial. Yet, prior calcite precipitation (PCP), a process driven by local hydrology, is a widely ignored control of speleothem δ18O. Here we investigate the effects of PCP on a stalagmite δ18O record from central Vietnam, spanning 45 – 4 ka. We employ a geochemical model that utilizes speleothem Mg/Ca and cave monitoring data to correct the δ18O record for PCP effects. The resulting record exhibits improved agreement with regional speleothem δ18O records and climate model simulations, suggesting that the corrected record more accurately reflects precipitation δ18O (δ18Op). Without considering PCP, our interpretations of the δ18O record would have been misleading. To avoid misinterpretations of speleothem δ18O, our results emphasize the necessity of considering PCP as a significant driver of speleothem δ18O. 
    more » « less