This project supports the success of undergraduate engineering students through coordinated design of curricula across STEM course sequences. The Analysis, Design, Development, Implementation, Evaluation (ADDIE) framework and backward design are being used to develop guides for instructors to align learning outcomes, assessments, and instructional materials in a physics – engineering mechanics course sequence. The approach relies on the analysis of student learning outcomes in each course, identification of interdependent learning outcomes, and development of skills hierarchies in the form of visual learning maps. The learning maps are used to illustrate the knowledge required and built upon throughout the course sequence. This study will assess the effectiveness of a course redesign intervention, which uses visual learning maps and backward design concepts, to guide instructors within a common course sequence to align learning outcomes and assessments. If successful, the intervention is expected to improve students’ primary learning and knowledge retention, as well as persistence and success in the degree. The study will compare academic performance among Mechanical Engineering B.S., Environmental Engineering B.S., and Civil Engineering B.S. students who begin a Physics for Engineers – Statics – Dynamics course prior to the intervention (control) and after the intervention (treatment). During control and treatment terms, students’ primary learning in individual courses will be assessed using established concept inventories. Retention of knowledge from pre-requisite courses will be tracked using pre-identified problem sets (quizzes, exams) specifically associated with interdependent learning outcomes in the Statics and Dynamics courses. Students’ primary learning and knowledge retention in the sequence will be related to longer term student success outcomes, including retention and graduation. The poster will show the results of the research team’s first year of work, including an analysis of current course materials, learning maps for each course, identification of interdependent learning outcomes, example guiding materials and templates for instructors, and preliminary student performance data from the control cohort.
more »
« less
Applying Project-based Learning to Improve Computer Networks Courses: An Experience Report
Project-based learning (PjBL) has been increasingly adopted in computer science courses to improve students’ engagement and learning outcomes. Although a computer networks course is in great need of a PjBL course module, no such module is available due to the huge gap between PjBL’s design requirements and the current structure and content of the course. This paper introduces a novel PjBL module for a computer networks course, which challenges the students with a real world problem of developing the communication system for a smart lock. Following the PjBL design principles, we devise several scaffolding activities and assignments, which can be integrated into a semester-long computer networks course. We test ran the PjBL module in both undergraduate- and graduate-level computer networks courses. Our preliminary evaluation results show that the proposed PjBL module is well received by the students and helps improve their learning outcomes.
more »
« less
- Award ID(s):
- 2104337
- PAR ID:
- 10342126
- Date Published:
- Journal Name:
- EDUCON
- Page Range / eLocation ID:
- 148 to 156
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Co-creation in higher education is the process where students collaborate with instructors in designing the curriculum and associated educational material. This can take place in different scenarios, such as integrating co-creation into an ongoing course, modifying a previously taken course, or while creating a new course. In this Work-In-Progress, we investigate training and formative assessment models for preparing graduate students in engineering to participate as co-creators of educational material on an interdisciplinary topic. The topic of cyber-physical systems engineering and product lifecycle management with application to structural health monitoring is considered in this co-creation project. This entails not only topics from different disciplines of civil, computer, electrical and environmental engineering, business, and information sciences, but also humanistic issues of sustainability, environment, ethical and legal concerns in data-driven decision-making that support the control of cyber-physical systems. Aside from the objective of creating modules accessible to students with different levels of disciplinary knowledge, the goal of this research is to investigate if the co-creation process and the resulting modules also promote interest and engagement in interdisciplinary research. A literature survey of effective training approaches for co-creation and associated educational theories is summarized. For students, essential training components include providing (i) opportunities to align their interests, knowledge, skills, and values with the topic presented; (ii) experiential learning on the topic to help develop and enhance critical thinking and question posing skills, and (iii) safe spaces to reflect, voice their opinions, concerns, and suggestions. In this research we investigate the adaption of project-based learning (PjBL) strategies and practices to support (i) and (ii) and focus groups for participatory action research (PAR) as safe spaces for reflection, feedback, and action in item (iii). The co-creation process is assessed through qualitative analysis of data collected through the PjBL activities and PAR focus groups and other qualitative data (i.e., focus group transcripts, interview transcripts, project materials, fieldnotes, etc.). The eventual outcome of the co-creation process will be an on-line course module that is designed to be integrated in existing engineering graduate and undergraduate courses at four different institutions, which includes two state universities and two that are historically black colleges and universities.more » « less
-
Rumain, Barbara T. (Ed.)Course-based undergraduate research experiences (CUREs) are laboratory courses that integrate broadly relevant problems, discovery, use of the scientific process, collaboration, and iteration to provide more students with research experiences than is possible in individually mentored faculty laboratories. Members of the national Malate dehydrogenase CUREs Community (MCC) investigated the differences in student impacts between traditional laboratory courses (control), a short module CURE within traditional laboratory courses (mCURE), and CUREs lasting the entire course (cCURE). The sample included approximately 1,500 students taught by 22 faculty at 19 institutions. We investigated course structures for elements of a CURE and student outcomes including student knowledge, student learning, student attitudes, interest in future research, overall experience, future GPA, and retention in STEM. We also disaggregated the data to investigate whether underrepresented minority (URM) outcomes were different from White and Asian students. We found that the less time students spent in the CURE the less the course was reported to contain experiences indicative of a CURE. The cCURE imparted the largest impacts for experimental design, career interests, and plans to conduct future research, while the remaining outcomes were similar between the three conditions. The mCURE student outcomes were similar to control courses for most outcomes measured in this study. However, for experimental design, the mCURE was not significantly different than either the control or cCURE. Comparing URM and White/Asian student outcomes indicated no difference for condition, except for interest in future research. Notably, the URM students in the mCURE condition had significantly higher interest in conducting research in the future than White/Asian students.more » « less
-
Abstract Field courses provide transformative learning experiences that support success and improve persistence for science, technology, engineering, and mathematics majors. But field courses have not increased proportionally with the number of students in the natural sciences. We conducted a scoping review to investigate the factors influencing undergraduate participation in and the outcomes from field courses in the United States. Our search yielded 61 articles, from which we classified the knowledge, affect, behavior, and skill-based outcomes resulting from field course participation. We found consistent reporting on course design but little reporting on demographics, which limits our understanding of who takes field courses. Cost was the most commonly reported barrier to student participation, and knowledge gains were the most commonly reported outcome. This scoping review underscores the need for more rigorous and evidence-based investigations of student outcomes in field courses. Understanding how field courses support or hinder student engagement is necessary to make them more accessible to all students.more » « less
-
ACM (Ed.)Early computer science courses (CS1, CS2) are the cornerstone of student understanding of computer science. These courses introduce the foundational knowledge of computer science needed to understand more complex topics and to be successful in follow-on courses. It is thus important to introduce CS concepts in an engaging and easy-to-understand manner to increase student interest and retention. This paper presents a new approach to teaching the Computer Science 1 (CS1) course through our BRIDGES system. This approach aims to increase student engagement and improve learning outcomes by using audio-based assignments that they can manipulate and process audio signal information, as well as visualize and play them. We explain how to design and implement audiobased assignments and connect them to fundamental programming constructs such as variables, control flow, and simple data structures, such as arrays. These assignments encourage and engage students by using audio data they are interested in to write code, promoting problem-solving and improvements in their critical thinking skills.more » « less
An official website of the United States government

