skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring the dust content of galactic haloes with Herschel – IV. NGC 3079
ABSTRACT We present the results from an analysis of deep Herschel far-infrared (far-IR) observations of the edge-on disc galaxy NGC 3079. The point spread function-cleaned Photodetector Array Camera and Spectrometer (PACS) images at 100 and 160 µm display a 25 × 25 kpc2 X-shape structure centred on the nucleus that is similar in extent and orientation to that seen in H α, X-rays, and the far-ultraviolet. One of the dusty filaments making up this structure is detected in the Spectral and Photometric Imaging Receiver 250 µm map out to ∼25 kpc from the nucleus. The match between the far-IR filaments and those detected at other wavelengths suggests that the dusty material has been lifted out of the disc by the same large-scale galactic wind that has produced the other structures in this object. A closer look at the central 10 × 10 kpc2 region provides additional support for this scenario. The dust temperatures traced by the 100–160 µm flux ratios in this region are enhanced within a biconical region centred on the active galactic nucleus, aligned along the minor axis of the galaxy, and coincident with the well-known double-lobed cm-wave radio structure and H α–X-ray nuclear superbubbles. PACS imaging spectroscopy of the inner 6 kpc region reveals broad [C ii] 158 µm emission line profiles and OH 79 µm absorption features along the minor axis of the galaxy with widths well in excess of those expected from beam smearing of the disc rotational motion. This provides compelling evidence that the cool material traced by the [C ii] and OH features directly interacts with the nuclear ionized and relativistic outflows traced by the H α, X-ray, and radio emission.  more » « less
Award ID(s):
1817125
PAR ID:
10342173
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
508
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
4902 to 4918
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The nuclear region of Type 1 active galactic nuclei (AGNs) has only been partially resolved so far in the near-infrared (IR), where we expect to see the dust sublimation region and the nucleus directly without obscuration. Here, we present the near-IR interferometric observation of the brightest Type 1 AGN NGC 4151 at long baselines of ∼250 m using the CHARA Array, reaching structures at hundred microarcsecond scales. The squared visibilities decrease down to as low as ∼0.25, definitely showing that the structure is resolved. Furthermore, combining with the previous visibility measurements at shorter baselines but at different position angles, we show that the structure is elongated perpendicular to the polar axis of the nucleus, as defined by optical polarization and a linear radio jet. A thin-ring fit gives a minor/major axis ratio of ∼0.7 at a radius ∼0.5 mas (∼0.03 pc). This is consistent with the case where the sublimating dust grains are distributed preferentially in the equatorial plane in a ring-like geometry, viewed at an inclination angle of ∼40°. The recent mid-IR interferometric finding of polar-elongated geometry at a pc scale, together with a larger-scale polar outflow as spectrally resolved by the Hubble Space Telescope, would generally suggest a dusty, conical and hollow outflow being launched, presumably in the dust sublimation region. This might potentially lead to a polar-elongated morphology in the near-IR, as opposed to the results here. We discuss a possible scenario where an episodic, one-off anisotropic acceleration formed a polar-fast and equatorially slow velocity distribution, having led to an effectively flaring geometry as we observe. 
    more » « less
  2. Abstract Triple–active galactic nucleus (AGN) systems are expected to be the result of the hierarchical model of galaxy formation. Since there are very few of them confirmed as such, we present the results of a new study of the triple AGN candidate SDSS J102700.40+174900.8 (center nucleus) through observations with the GTC-MEGARA Integral Field Unit. 1D and 2D analysis of the line ratios of the three nuclei allow us to locate them in the EW(H α ) versus [N ii ]/H α diagram. The central nucleus is found to be a retired galaxy (or fake AGN). The neighbors are found to be a strong AGN (southeastern nucleus, J102700.55+174900.2), compatible with a Seyfert 2 (Sy2) galaxy, and a weak AGN (northern nucleus, J102700.38+174902.6), compatible with a LINER2. We find evidence that the neighbors constitute a dual AGN system (Sy2–LINER2) with a projected separation of 3.98 kpc in the optical bands. The H α velocity map shows that the northern nucleus has an H α emission with a velocity offset of ∼−500 km s −1 , whereas the southeastern nucleus has a rotating disk and H α extended emission at kiloparsec scales. Chandra archival data confirm that the neighbors have X-ray (0.5–2) keV and (2–7) keV emission, whereas the center nucleus shows no X-ray emission. A collisional ring with knots is observed in Hubble Space Telescope images of the southeastern nucleus. These knots coincide with star formation regions that, along with the ring, are predicted in a head-on collision. In this case, the morphology changes are probably due to a minor merger that was produced by the passing of the northern through the southeastern nucleus. 
    more » « less
  3. Abstract We present the discovery and timing of the young (age ∼28.6 kyr) pulsar PSR J0837–2454. Based on its high latitude ( b = 98) and dispersion measure (DM = 143 pc cm −3 ), the pulsar appears to be at a z -height of >1 kpc above the Galactic plane, but near the edge of our Galaxy. This is many times the observed scale height of the canonical pulsar population, which suggests this pulsar may have been born far out of the plane. If accurate, the young age and high z -height imply that this is the first pulsar known to be born from a runaway O/B star. In follow-up imaging with the Australia Telescope Compact Array (ATCA), we detect the pulsar with a flux density S 1400 = 0.18 ± 0.05 mJy. We do not detect an obvious supernova remnant around the pulsar in our ATCA data, but we detect a colocated, low-surface-brightness region of ∼15 extent in archival Galactic and Extragalactic All-sky MWA Survey data. We also detect colocated H α emission from the Southern H α Sky Survey Atlas. Distance estimates based on these two detections come out to ∼0.9 kpc and ∼0.2 kpc, respectively, both of which are much smaller than the distance predicted by the NE2001 model (6.3 kpc) and YMW model (>25 kpc) and place the pulsar much closer to the plane of the Galaxy. If the pulsar/remnant association holds, this result also highlights the inherent difficulty in the classification of transients as “Galactic” (pulsar) or “extragalactic” (fast radio burst) toward the Galactic anticenter based solely on the modeled Galactic electron contribution to a detection. 
    more » « less
  4. Abstract We study the ionization and excitation structure of the interstellar medium in the late-stage gas-rich galaxy merger NGC 6240 using a suite of emission-line maps at ∼25 pc resolution from the Hubble Space Telescope, Keck/NIRC2 with Adaptive Optics, and the Atacama Large Millimeter/submillimeter Array (ALMA). NGC 6240 hosts a superwind driven by intense star formation and/or one or both of two active nuclei; the outflows produce bubbles and filaments seen in shock tracers from warm molecular gas (H22.12μm) to optical ionized gas ([Oiii], [Nii], [Sii], and [Oi]) and hot plasma (FeXXV). In the most distinct bubble, we see a clear shock front traced by high [Oiii]/Hβand [Oiii]/[Oi]. Cool molecular gas (CO(2−1)) is only present near the base of the bubble, toward the nuclei launching the outflow. We interpret the lack of molecular gas outside the bubble to mean that the shock front is not responsible for dissociating molecular gas, and conclude that the molecular clouds are partly shielded and either entrained briefly in the outflow, or left undisturbed while the hot wind flows around them. Elsewhere in the galaxy, shock-excited H2extends at least ∼4 kpc from the nuclei, tracing molecular gas even warmer than that between the nuclei, where the two galaxies’ interstellar media are colliding. A ridgeline of high [Oiii]/Hβemission along the eastern arm aligns with the southern nucleus’ stellar disk minor axis; optical integral field spectroscopy from WiFeS suggests this highly ionized gas is centered at systemic velocity and likely photoionized by direct line of sight to the southern active galactic nucleus. 
    more » « less
  5. null (Ed.)
    ABSTRACT We present deep far-infrared observations of the nearby edge-on galaxy NGC 891 obtained with the Herschel Space Observatory and the Spitzer Space Telescope. The maps confirm the detection of thermal emission from the inner circumgalactic medium (halo) and spatially resolve a dusty superbubble and a dust spur (filament). The dust temperature of the halo component is lower than that of the disc but increases across a region of diameter ≈8.0 kpc extending at least 7.7 kpc vertically from one side of the disc, a region we call a superbubble because of its association with thermal X-ray emission and a minimum in the synchrotron scale height. This outflow is breaking through the thick disc and developing into a galactic wind, which is of particular interest because NGC 891 is not considered a starburst galaxy; the star formation rate surface density, 0.03 M⊙ yr−1 kpc−2, and gas fraction, just $$10{{\ \rm per\ cent}}$$ in the inner disc, indicate the threshold for wind formation is lower than previous work has suggested. We conclude that the star formation surface density is sufficient for superbubble blowout into the halo, but the cosmic ray electrons may play a critical role in determining whether this outflow develops into a fountain or escapes from the gravitational potential. The high dust-to-gas ratio in the dust spur suggests the material was pulled out of NGC 891 through the collision of a minihalo with the disc of NGC 891. We conclude that NGC 891 offers an example of both feedback and satellite interactions transporting dust into the halo of a typical galaxy. 
    more » « less