Abstract The predominant conceptualization of scientific literacy occurs on the micro scale of an individual person. However, scientific literacy can also be exhibited at the meso scale by groups of people in communities of place, practice, or interest. What comprises this community level scientific literacy (CSL) is both understudied and undertheorized. In this paper, we utilized a systematic literature review to describe how CSL is characterized in the extant literature and a Delphi survey of experts to elicit more current thought. Guided by cultural‐historical activity theory, inductive and deductive analyses produced seven elements of CSL and their constituent characteristics: (1) resources, (2) attributes of those resources, (3) actors, (4) interactions between actors, (5) contexts, (6) topics, and (7) purposes. The typology created through this process is meant to be generative, serving as a starting point for continuing refinement within science education and other fields related to science learning and knowing.
more »
« less
A scoping review on the multiplicity of scale in spatial analysis
Abstract Scale is a central concept in the geographical sciences and is an intrinsic property of many spatial systems. It also serves as an essential thread in the fabric of many other physical and social sciences, which has contributed to the use of different terminology for similar manifestations of what we refer to as ‘scale’, leading to a surprising amount of diversity around this fundamental concept and its various ‘multiscale’ extensions. To address this, we review common abstractions about spatial scale and how they are employed in quantitative research. We also explore areas where the conceptualizations of multiple spatial scales can be differentiated. This is achieved by first bridging terminology and concepts, and then conducting a scoping review of the topic. A typology for spatial scale is discussed that can be used to categorize its multifarious meanings and measures. This typology is then used to distinguish what we term ‘process scale,’ from other types of spatial scale and to highlight current trends in uncovering aspects of process scale. We end with suggestions on how to further build knowledge regarding spatial processes through the lens of spatial scale.
more »
« less
- Award ID(s):
- 2117455
- PAR ID:
- 10342296
- Date Published:
- Journal Name:
- Journal of Geographical Systems
- ISSN:
- 1435-5930
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Sonification, or the practice of generating sound from data, is a promising alternative or complement to data visualization for exploring research questions in the life sciences. Expressing or communicating data in the form of sound rather than graphs, tables, or renderings can provide a secondary information source for multitasking or remote monitoring purposes or make data accessible when visualizations cannot be used. While popular in astronomy, neuroscience, and geophysics as a technique for data exploration and communication, its potential in the biological and biotechnological sciences has not been fully explored. In this review, we introduce sonification as a concept, some examples of how sonification has been used to address areas of interest in biology, and the history of the technique. We then highlight a selection of biology‐related publications that involve sonifications of DNA datasets and protein datasets, sonifications for data collection and interpretation, and sonifications aimed to improve science communication and accessibility. Through this review, we aim to show how sonification has been used both as a discovery tool and a communication tool and to inspire more life‐science researchers to incorporate sonification into their own studies.more » « less
-
Non-Lattice Subgraphs (NLSs) are graph fragments of a terminology which violates the lattice property, a desirable property for a well-formed terminology. They have been proven to be useful in identifying inconsistencies in biomedical terminologies. Similar NLSs may denote similar inconsistencies that may suggest possibly similar remediations. Therefore, we investigate a structural-semantic-based approach to identify similar NLSs in the Gene Ontology (GO). For an input NLS, we first obtain all its isomorphic NLSs. Then, we compare each concept of the input NLS with the corresponding concept in an isomorphic NLS and then compute a similarity score for the two NLSs. Applying this approach to 10 different structures of NLSs in GO, we found that 38.43% (910/2368) of NLSs have at least one similar NLS. We also observed some interesting lexical patterns frequently existing in similar NLSs. Our approach may be applicable to other biomedical terminologies for identifying similar NLSs.more » « less
-
In research on process organization studies, the concept of multiplicity is widely used, but a fundamental confusion about what process multiplicity means persists. As a result, we miss some of the potential of this concept for understanding process dynamics and process change. In this paper, we define process multiplicity as a duality of ‘one’ and ‘many’, and we conceptualize ‘the many’ as a space of possible paths encompassed by a process. We use the notion of paths to operationalize process multiplicity and make it accessible for empirical research. When we see process as a multiplicity, process change can be understood as expanding, shifting or contracting the space of possible paths. We suggest that this concept of process multiplicity also has implications for a range of other theoretical and practical topics, including standards, standardization and flexibility as well as process replication, management and resilience.more » « less
-
null (Ed.)Biomedical terminologies have been increasingly used in modern biomedical research and applications to facilitate data management and ensure semantic interoperability. As part of the evolution process, new concepts are regularly added to biomedical terminologies in response to the evolving domain knowledge and emerging applications. Most existing concept enrichment methods suggest new concepts via directly importing knowledge from external sources. In this paper, we introduced a lexical method based on formal concept analysis (FCA) to identify potentially missing concepts in a given terminology by leveraging its intrinsic knowledge - concept names. We first construct the FCA formal context based on the lexical features of concepts. Then we perform multistage intersection to formalize new concepts and detect potentially missing concepts. We applied our method to the Disease or Disorder sub-hierarchy in the National Cancer Institute (NCI) Thesaurus (19.08d version) and identified a total of 8,983 potentially missing concepts. As a preliminary evaluation of our method to validate the potentially missing concepts, we further checked whether they were included in any external source terminology in the Unified Medical Language System (UMLS). The result showed that 592 out of 8,937 potentially missing concepts were found in the UMLS.more » « less
An official website of the United States government

