This content will become publicly available on March 25, 2025
We study the group-fair obnoxious facility location problems from the mechanism design perspective where agents belong to different groups and have private location preferences on the undesirable locations of the facility. Our main goal is to design strategyproof mechanisms that elicit the true location preferences from the agents and determine a facility location that approximately optimizes several group-fair objectives. We first consider the maximum total and average group cost (group-fair) objectives. For these objectives, we propose deterministic mechanisms that achieve 3-approximation ratios and provide matching lower bounds. We then provide the characterization of 2-candidate strategyproof randomized mechanisms. Leveraging the characterization, we design randomized mechanisms with improved approximation ratios of 2 for both objectives. We also provide randomized lower bounds of 5/4 for both objectives. Moreover, we investigate intergroup and intragroup fairness (IIF) objectives, addressing fairness between groups and within each group. We present a mechanism that achieves a 4-approximation for the IIF objectives and provide tight lower bounds.
more » « less- Award ID(s):
- 2302999
- PAR ID:
- 10538444
- Publisher / Repository:
- AAAI Conference on Artificial Intelligence
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 38
- Issue:
- 9
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 9832 to 9839
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
For the assignment problem where multiple indivis- ible items are allocated to a group of agents given their ordinal preferences, we design randomized mechanisms that satisfy first-choice maximality (FCM), i.e., maximizing the number of agents as- signed their first choices, together with Pareto- efficiency (PE). Our mechanisms also provide guarantees of ex-ante and ex-post fairness. The generalizedeager Boston mechanism is ex-ante envy-free, and ex-post envy-free up to one item (EF1). The generalized probabilistic Boston mech- anism is also ex-post EF1, and satisfies ex-ante ef- ficiency instead of fairness. We also show that no strategyproof mechanism satisfies ex-post PE, EF1, and FCM simultaneously. In doing so, we expand the frontiers of simultaneously providing efficiency and both ex-ante and ex-post fairness guarantees for the assignment problem.more » « less
-
We consider a social choice setting with agents that are partitioned into disjoint groups, and have metric preferences over a set of alternatives. Our goal is to choose a single alternative aiming to optimize various objectives that are functions of the distances between agents and alternatives in the metric space, under the constraint that this choice must be made in a distributed way: The preferences of the agents within each group are first aggregated into a representative alternative for the group, and then these group representatives are aggregated into the final winner. Deciding the winner in such a way naturally leads to loss of efficiency, even when complete information about the metric space is available. We provide a series of (mostly tight) bounds on the distortion of distributed mechanisms for variations of well-known objectives, such as the (average) total cost and the maximum cost, and also for new objectives that are particularly appropriate for this distributed setting and have not been studied before.more » « less
-
A central goal in the long literature on fair division is the design of mechanisms that implement fair outcomes, despite the participants’ strategic behavior. We study this question by measuring the fairness of an allocation using the geometric mean of the agents’ values, known as the Nash social welfare (NSW). This objective is maximized by widely known concepts such as the Nash bargaining solution, proportional fairness, and the competitive equilibrium with equal incomes; we focus on (approximately) implementing this objective and analyze the Trading Post mechanism. We consider allocating goods that are substitutes or complements and show that this mechanism achieves an approximation of two for concave utility functions and becomes essentially optimal for complements, where it can reach [Formula: see text] for any [Formula: see text]. Moreover, we show that the Nash equilibria of this mechanism are pure and provide individual fairness in the sense of proportionality.more » « less
-
This paper is part of an emerging line of work at the intersection of machine learning and mechanism design, which aims to avoid noise in training data by correctly aligning the incentives of data sources. Specifically, we focus on the ubiquitous problem of linear regression, where strategyproof mechanisms have previously been identified in two dimensions. In our setting, agents have single-peaked preferences and can manipulate only their response variables. Our main contribution is the discovery of a family of group strategyproof linear regression mechanisms in any number of dimensions, which we call generalized resistant hyperplane mechanisms. The game-theoretic properties of these mechanisms --- and, in fact, their very existence --- are established through a connection to a discrete version of the Ham Sandwich Theorem.more » « less
-
In this work, we introduce an alternative model for the design and analysis of strategyproof mechanisms that is motivated by the recent surge of work in “learning-augmented algorithms.” Aiming to complement the traditional worst-case analysis approach in computer science, this line of work has focused on the design and analysis of algorithms that are enhanced with machine-learned predictions. The algorithms can use the predictions as a guide to inform their decisions, aiming to achieve much stronger performance guarantees when these predictions are accurate (consistency), while also maintaining near-optimal worst-case guarantees, even if these predictions are inaccurate (robustness). We initiate the design and analysis of strategyproof mechanisms that are augmented with predictions regarding the private information of the participating agents. To exhibit the important benefits of this approach, we revisit the canonical problem of facility location with strategic agents in the two-dimensional Euclidean space. We study both the egalitarian and utilitarian social cost functions, and we propose new strategyproof mechanisms that leverage predictions to guarantee an optimal trade-off between consistency and robustness. Furthermore, we also prove parameterized approximation results as a function of the prediction error, showing that our mechanisms perform well, even when the predictions are not fully accurate.
Funding: The work of E. Balkanski was supported in part by the National Science Foundation [Grants CCF-2210501 and IIS-2147361]. The work of V. Gkatzelis and X. Tan was supported in part by the National Science Foundation [Grant CCF-2210502] and [CAREER Award CCF-2047907].