skip to main content

Title: Channel-Wise Early Stopping without a Validation Set via NNK Polytope Interpolation
State-of-the-art neural network architectures continue to scale in size and deliver impressive generalization results, although this comes at the expense of limited interpretability. In particular, a key challenge is to determine when to stop training the model, as this has a significant impact on generalization. Convolutional neural networks (ConvNets) comprise high-dimensional feature spaces formed by the aggregation of multiple channels, where analyzing intermediate data representations and the model's evolution can be challenging owing to the curse of dimensionality. We present channel-wise DeepNNK (CW-DeepNNK), a novel channel-wise generalization estimate based on non-negative kernel regression (NNK) graphs with which we perform local polytope interpolation on low-dimensional channels. This method leads to instance-based interpretability of both the learned data representations and the relationship between channels. Motivated by our observations, we use CW-DeepNNK to propose a novel early stopping criterion that (i) does not require a validation set, (ii) is based on a task performance metric, and (iii) allows stopping to be reached at different points for each channel. Our experiments demonstrate that our proposed method has advantages as compared to the standard criterion based on validation set performance.
Authors:
; ; ;
Award ID(s):
2009032
Publication Date:
NSF-PAR ID:
10342316
Journal Name:
Proceedings AsiaPacific Signal and Information Processing Association Annual Summit and Conference APSIPA ASC
ISSN:
2640-0103
Sponsoring Org:
National Science Foundation
More Like this
  1. Feature spaces in the deep layers of convolutional neural networks (CNNs) are often very high-dimensional and difficult to inter-pret. However, convolutional layers consist of multiple channels that are activated by different types of inputs, which suggests that more insights may be gained by studying the channels and how they relate to each other. In this paper, we first analyze theoretically channel-wise non-negative kernel (CW-NNK) regression graphs, which allow us to quantify the overlap between channels and, indirectly, the intrinsic dimension of the data representation manifold. We find that redundancy between channels is significant and varies with the layer depth and the level of regularization during training. Additionally, we observe that there is a correlation between channel overlap in the last convolutional layer and generalization performance. Our experimental results demonstrate that these techniques can lead to a better understanding of deep representations.
  2. Obeid, I. ; Selesnick, I. (Ed.)
    The Neural Engineering Data Consortium at Temple University has been providing key data resources to support the development of deep learning technology for electroencephalography (EEG) applications [1-4] since 2012. We currently have over 1,700 subscribers to our resources and have been providing data, software and documentation from our web site [5] since 2012. In this poster, we introduce additions to our resources that have been developed within the past year to facilitate software development and big data machine learning research. Major resources released in 2019 include: ● Data: The most current release of our open source EEG data is v1.2.0 of TUH EEG and includes the addition of 3,874 sessions and 1,960 patients from mid-2015 through 2016. ● Software: We have recently released a package, PyStream, that demonstrates how to correctly read an EDF file and access samples of the signal. This software demonstrates how to properly decode channels based on their labels and how to implement montages. Most existing open source packages to read EDF files do not directly address the problem of channel labels [6]. ● Documentation: We have released two documents that describe our file formats and data representations: (1) electrodes and channels [6]: describes how tomore »map channel labels to physical locations of the electrodes, and includes a description of every channel label appearing in the corpus; (2) annotation standards [7]: describes our annotation file format and how to decode the data structures used to represent the annotations. Additional significant updates to our resources include: ● NEDC TUH EEG Seizure (v1.6.0): This release includes the expansion of the training dataset from 4,597 files to 4,702. Calibration sequences have been manually annotated and added to our existing documentation. Numerous corrections were made to existing annotations based on user feedback. ● IBM TUSZ Pre-Processed Data (v1.0.0): A preprocessed version of the TUH Seizure Detection Corpus using two methods [8], both of which use an FFT sliding window approach (STFT). In the first method, FFT log magnitudes are used. In the second method, the FFT values are normalized across frequency buckets and correlation coefficients are calculated. The eigenvalues are calculated from this correlation matrix. The eigenvalues and correlation matrix's upper triangle are used to generate feature. ● NEDC TUH EEG Artifact Corpus (v1.0.0): This corpus was developed to support modeling of non-seizure signals for problems such as seizure detection. We have been using the data to build better background models. Five artifact events have been labeled: (1) eye movements (EYEM), (2) chewing (CHEW), (3) shivering (SHIV), (4) electrode pop, electrostatic artifacts, and lead artifacts (ELPP), and (5) muscle artifacts (MUSC). The data is cross-referenced to TUH EEG v1.1.0 so you can match patient numbers, sessions, etc. ● NEDC Eval EEG (v1.3.0): In this release of our standardized scoring software, the False Positive Rate (FPR) definition of the Time-Aligned Event Scoring (TAES) metric has been updated [9]. The standard definition is the number of false positives divided by the number of false positives plus the number of true negatives: #FP / (#FP + #TN). We also recently introduced the ability to download our data from an anonymous rsync server. The rsync command [10] effectively synchronizes both a remote directory and a local directory and copies the selected folder from the server to the desktop. It is available as part of most, if not all, Linux and Mac distributions (unfortunately, there is not an acceptable port of this command for Windows). To use the rsync command to download the content from our website, both a username and password are needed. An automated registration process on our website grants both. An example of a typical rsync command to access our data on our website is: rsync -auxv nedc_tuh_eeg@www.isip.piconepress.com:~/data/tuh_eeg/ Rsync is a more robust option for downloading data. We have also experimented with Google Drive and Dropbox, but these types of technology are not suitable for such large amounts of data. All of the resources described in this poster are open source and freely available at https://www.isip.piconepress.com/projects/tuh_eeg/downloads/. We will demonstrate how to access and utilize these resources during the poster presentation and collect community feedback on the most needed additions to enable significant advances in machine learning performance.« less
  3. Variable selection plays a fundamental role in high-dimensional data analysis. Various methods have been developed for variable selection in recent years. Well-known examples are forward stepwise regression (FSR) and least angle regression (LARS), among others. These methods typically add variables into the model one by one. For such selection procedures, it is crucial to find a stopping criterion that controls model complexity. One of the most commonly used techniques to this end is cross-validation (CV) which, in spite of its popularity, has two major drawbacks: expensive computational cost and lack of statistical interpretation. To overcome these drawbacks, we introduce a flexible and efficient test-based variable selection approach that can be incorporated into any sequential selection procedure. The test, which is on the overall signal in the remaining inactive variables, is based on the maximal absolute partial correlation between the inactive variables and the response given active variables. We develop the asymptotic null distribution of the proposed test statistic as the dimension tends to infinity uniformly in the sample size. We also show that the test is consistent. With this test, at each step of the selection, a new variable is included if and only if the -value is below somemore »pre-defined level. Numerical studies show that the proposed method delivers very competitive performance in terms of variable selection accuracy and computational complexity compared to CV.« less
  4. We propose a novel end-to-end framework for whole-brain and whole-genome imaging-genetics. Our genetics network uses hierarchical graph convolution and pooling operations to embed subject-level data onto a low-dimensional latent space. The hierarchical network implicitly tracks the convergence of genetic risk across well-established biological pathways, while an attention mechanism automatically identifies the salient edges of this network at the subject level. In parallel, our imaging network projects multimodal data onto a set of latent embeddings. For interpretability, we implement a Bayesian feature selection strategy to extract the discriminative imaging biomarkers; these feature weights are optimized alongside the other model parameters. We couple the imaging and genetic embeddings with a predictor network, to ensure that the learned representations are linked to phenotype. We evaluate our framework on a schizophrenia dataset that includes two functional MRI paradigms and gene scores derived from Single Nucleotide Polymorphism data. Using repeated 10-fold cross-validation, we show that our imaging-genetics fusion achieves the better classification performance than state-of-the-art baselines. In an exploratory analysis, we further show that the biomarkers identified by our model are reproducible and closely associated with deficits in schizophrenia.
  5. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEGmore »channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. https://doi.org/10.1088/1741-2552/ab0ab5. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. https://doi.org/10.1590/0104-1169.3488.2513. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. https://doi.org/10.1007/978-3-030-36844-9_8. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: https://newborncare.natus.com/products-services/newborn-care-products/newborn-brain-injury/cfm-olympic-brainz-monitor. [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. https://doi.org/10.1097/WNP.0000000000000709. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. https://doi.org/10.1109/SPMB.2015.7405421. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. https://www.oreilly.com/library/view/understanding-the-linux/0596005652/. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. https://dl.acm.org/doi/10.5555/1953048.2078195. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997. https://doi.org/10.1016/S0013-4694(97)00003-9.« less