skip to main content


Title: Enhancing Ocean Biogeochemical Models With Phytoplankton Variable Composition
Chlorophyll (Chl) is widely taken as a proxy for phytoplankton biomass, despite well-known variations in Chl:C:biomass ratios as an acclimative response to changing environmental conditions. For the sake of simplicity and computational efficiency, many large scale biogeochemical models ignore this flexibility, compromising their ability to capture phytoplankton dynamics. Here we evaluate modelling approaches of differing complexity for phytoplankton growth response: fixed stoichiometry, fixed stoichiometry with photoacclimation, classical variable-composition with photoacclimation, and Instantaneous Acclimation with optimal resource allocation. Model performance is evaluated against biogeochemical observations from time-series sites BATS and ALOHA, where phytoplankton composition varies substantially. We analyse the sensitivity of each model variant to the affinity parameters for light and nutrient, respectively. Models with fixed stoichiometry are more sensitive to parameter perturbations, but the inclusion of photoacclimation in the fixed-stoichiometry model generally captures Chl observations better than other variants when individually tuned for each site and when using similar parameter sets for both sites. Compared to the fixed stoichiometry model including photoacclimation, models with variable C:N ratio perform better in cross-validation experiments using model-specific parameter sets tuned for the other site; i.e., they are more portable. Compared to typical variable composition approaches, instantaneous acclimation, which requires fewer state variables, generally yields better performance but somewhat lower portability than the fully dynamic variant. Further assessments using objective optimisation and more contrasting stations are suggested.  more » « less
Award ID(s):
1756517
NSF-PAR ID:
10342384
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
8
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Primary production and photoacclimation models are two important classes of physiological models that find applications in remote sensing of pools and fluxes of carbon associated with phytoplankton in the ocean. They are also key components of ecosystem models designed to study biogeochemical cycles in the ocean. So far, these two classes of models have evolved in parallel, somewhat independently of each other. Here we examine how they are coupled to each other through the intermediary of the photosynthesis–irradiance parameters. We extend the photoacclimation model to accommodate the spectral effects of light penetration in the ocean and the spectral sensitivity of the initial slope of the photosynthesis–irradiance curve, making the photoacclimation model fully compatible with spectrally resolved models of photosynthesis in the ocean. The photoacclimation model contains a parameterθ<#comment/>m, which is the maximum chlorophyll-to-carbon ratio that phytoplankton can attain when available light tends to zero. We explore how size-class-dependent values ofθ<#comment/>mcould be inferred from field data on chlorophyll and carbon content in phytoplankton, and show that the results are generally consistent with lower bounds estimated from satellite-based primary production calculations. This was accomplished using empirical models linking phytoplankton carbon and chlorophyll concentration, and the range of values obtained in culture measurements. We study the equivalence between different classes of primary production models at the functional level, and show that the availability of a chlorophyll-to-carbon ratio facilitates the translation between these classes. We discuss the importance of the better assignment of parameters in primary production models as an important avenue to reduce model uncertainties and to improve the usefulness of satellite-based primary production calculations in climate research.

     
    more » « less
  2. Abstract

    Dissolved iron (dFe) plays an important role in regulating marine productivity. In high nutrient, low chlorophyll regions (>33% of the global ocean), iron is the primary growth limiting nutrient, and elsewhere iron can regulate nitrogen fixation by diazotrophs. The link between iron availability and carbon export is strongly dependent on the phytoplankton iron quotas or cellular Fe:C ratios. This ratio varies by more than an order of magnitude in the open ocean and is positively correlated with ambient dFe concentrations in field observations. Representing Fe:C ratios within models is necessary to investigate how ocean carbon cycling will interact with perturbations to iron cycling in a changing climate. The Community Earth System Model ocean component was modified to simulate dynamic, group‐specific, phytoplankton Fe:C that varies as a function of ambient iron concentration. The simulated Fe:C ratios improve the representation of the spatial trends in the observed Fe:C ratios. The acclimation of phytoplankton Fe:C ratios dampens the biogeochemical response to varying atmospheric deposition of soluble iron, compared to a fixed Fe:C ratio. However, varying atmospheric soluble iron supply has first order impacts on global carbon and nitrogen fluxes and on nutrient limitation spatial patterns. Our results suggest that pyrogenic Fe is a significant dFe source that rivals mineral dust inputs in some regions. Changes in dust flux and iron combustion sources (anthropogenic and wildfires) will modify atmospheric Fe inputs in the future. Accounting for dynamic phytoplankton iron quotas is critical for understanding ocean biogeochemistry and projecting its response to variations in atmospheric deposition.

     
    more » « less
  3. The underwater light field of lakes, estuaries, and oceans may vary greatly in spectral composition. Phytoplankton in these environments must contain pigments that absorb the available colors of light. If spectral quality changes, acclimation to the new spectral environment would confer an ecological advantage in terms of photosynthesis and growth. Here, we explored the capacity of eight marine cryptophytes to adjust pigmentation in response to changes in spectral irradiance and related effects on light absorption, photosynthetically useable radiation (PUR), and growth rate. The pigment composition of all species changed in some way in response to shifts in spectral irradiance, but not all pigment changes could be considered advantageous in the context of chromatic acclimation. For most species, absorption by chl‐aand chl‐c2resulted in highest absorption in the blue region, highestPURvalues for blue‐light grown cells, and highest growth rates in blue light. The exception wasChroomonas mesostigmatica(CCMP1168), which contains a high percentage of Cryptophyte‐Phycocyanin (Cr‐PC) 645, absorbs strongly in the orange‐to‐red region of the spectrum, and grew fastest under red light. The position and magnitude of the maximum and secondary absorption peak of Cr‐PC569, the phycobiliprotein pigment ofHemiselmis cryptochromatica, varied with spectral irradiance. The underlying cause remains unknown, but may represent a mechanism by which cryptophytes optimize photon capture.

     
    more » « less
  4. Abstract

    The elemental ratios of carbon, nitrogen, and phosphorus (C:N:P) within organic matter play a key role in coupling biogeochemical cycles in the global ocean. At the cellular level, these ratios are controlled by physiological responses to the environment. But linking these cellular‐level processes to global biogeochemical cycles remains challenging. We present a novel model framework that combines knowledge of phytoplankton cellular functioning with global scale hydrographic data, to assess the role of variable carbon‐to‐phosphorus ratios (RC:P) on the distribution of export production. We implement a trait‐based mechanistic model of phytoplankton growth into a global biogeochemical inverse model to predict global patterns of phytoplankton physiology and stoichiometry that are consistent with both biological growth mechanisms and hydrographic carbon and nutrient observations. We compare this model to empirical parameterizations relatingRC:Pto temperature or phosphate concentration. We find that the way the model represents variable stoichiometry affects the magnitude and spatial pattern of carbon export, with globally integrated fluxes varying by up to 10% (1.3 Pg C yr−1) across models. Despite these differences, all models exhibit strong consistency with observed dissolved inorganic carbon and phosphate concentrations (R2 > 0.9), underscoring the challenge of selecting the most accurate model structure. We also find that the choice of parameterization impacts the capacity of changingRC:Pto buffer predicted export declines. Our novel framework offers a pathway by which additional biological information might be used to reduce the structural uncertainty in model representations of phytoplankton stoichiometry, potentially improving our capacity to project future changes.

     
    more » « less
  5. Abstract

    Ocean phytoplankton play a critical role in the global carbon cycle, contributing ∼50% of global photosynthesis. As planktonic organisms, phytoplankton encounter significant environmental variability as they are advected throughout the ocean. How this variability impacts phytoplankton growth rates and population dynamics remains unclear. Here, we systematically investigated the impact of different rates and magnitudes of sea surface temperature (SST) variability on phytoplankton community growth rates using surface drifter observations from the Southern Ocean (>30°S) and a phenotype‐based ecosystem model. Short‐term SST variability (<7 days) had a minimal impact on phytoplankton community growth rates. Moderate SST changes of 3–4°C over 7–45 days produced a large time lag between the temperature change and the biological response. The impact of SST variability on community growth rates was nonlinear and a function of the rate and magnitude of change. Additionally, the nature of variability generated in a Lagrangian reference frame (following trajectories of surface water parcels) was larger than that within an Eulerian reference frame (fixed point), which initiated different phytoplankton responses between the two reference frames. Finally, we found that these dynamics were not captured by the Eppley growth model commonly used in global biogeochemical models and resulted in an overestimation of community growth rates, particularly in dynamic, strong frontal regions of the Southern Ocean. This work demonstrates that the timescale for environmental selection (community replacement) is a critical factor in determining community composition and takes a first step towards including the impact of variability and biological response times into biogeochemical models.

     
    more » « less