skip to main content

Title: Acclimation of Phytoplankton Fe:C Ratios Dampens the Biogeochemical Response to Varying Atmospheric Deposition of Soluble Iron

Dissolved iron (dFe) plays an important role in regulating marine productivity. In high nutrient, low chlorophyll regions (>33% of the global ocean), iron is the primary growth limiting nutrient, and elsewhere iron can regulate nitrogen fixation by diazotrophs. The link between iron availability and carbon export is strongly dependent on the phytoplankton iron quotas or cellular Fe:C ratios. This ratio varies by more than an order of magnitude in the open ocean and is positively correlated with ambient dFe concentrations in field observations. Representing Fe:C ratios within models is necessary to investigate how ocean carbon cycling will interact with perturbations to iron cycling in a changing climate. The Community Earth System Model ocean component was modified to simulate dynamic, group‐specific, phytoplankton Fe:C that varies as a function of ambient iron concentration. The simulated Fe:C ratios improve the representation of the spatial trends in the observed Fe:C ratios. The acclimation of phytoplankton Fe:C ratios dampens the biogeochemical response to varying atmospheric deposition of soluble iron, compared to a fixed Fe:C ratio. However, varying atmospheric soluble iron supply has first order impacts on global carbon and nitrogen fluxes and on nutrient limitation spatial patterns. Our results suggest that pyrogenic Fe is a significant dFe source that rivals mineral dust inputs in some regions. Changes in dust flux and iron combustion sources (anthropogenic and wildfires) will modify atmospheric Fe inputs in the future. Accounting for dynamic phytoplankton iron quotas is critical for understanding ocean biogeochemistry and projecting its response to variations in atmospheric deposition.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Phytoplankton growth in the Indian Ocean is generally limited by macronutrients (nitrogen: N and phosphorus: P) in the north and by micronutrient (iron: Fe) in the south. Increasing atmospheric deposition of N and dissolved Fe (dFe) into the ocean due to human activities can thus lead to significant responses from both the northern and southern Indian Ocean ecosystems. Previous modeling studies investigated the impacts of anthropogenic nutrient deposition on the ocean, but their results are uncertain due to incomplete representations of the Fe cycling. This study uses a state‐of‐the‐art ocean ecosystem and Fe cycling model to evaluate the transient responses of ocean productivity and carbon uptake in the Indian Ocean, focusing on the centennial time scale. The model includes three major dFe sources and represents an internal Fe cycling modulated by scavenging, desorption, and complexation with multiple, spatially varying ligand classes. Sensitivity simulations show that after a century of anthropogenic deposition, ecosystem responses in the Indian Ocean are not uniform due to a competition between the phytoplankton community. In particular, the competition between diatom, coccolithophore, and picoplankton alters the balance between the organic and carbonate pumps in the Indian Ocean, increasing the carbon uptake along 50°S and the southeastern tropics while decreasing it in the Arabian Sea. Our results reveal the important role of ecosystem dynamics in controlling the sensitivity of carbon fluxes in the Indian Ocean under the impact of anthropogenic nutrient deposition over a centennial timescale.

    more » « less
  2. Abstract

    Iron can be a growth‐limiting nutrient for phytoplankton, modifying rates of net primary production, nitrogen fixation, and carbon export ‐ highlighting the importance of new iron inputs from the atmosphere. The bioavailable iron fraction depends on the emission source and the dissolution during transport. The impacts of anthropogenic combustion and land use change on emissions from industrial, domestic, shipping, desert, and wildfire sources suggest that Northern Hemisphere soluble iron deposition has likely been enhanced between 2% and 68% over the Industrial Era. If policy and climate follow the intermediate Representative Concentration Pathway 4.5 trajectory, then results suggest that Southern Ocean (>30°S) soluble iron deposition would be enhanced between 63% and 95% by 2100. Marine net primary productivity and carbon export within the open ocean are most sensitive to changes in soluble iron deposition in the Southern Hemisphere; this is predominantly driven by fire rather than dust iron sources. Changes in iron deposition cause large perturbations to the marine nitrogen cycle, up to 70% increase in denitrification and 15% increase in nitrogen fixation, but only modestly impacts the carbon cycle and atmospheric CO2concentrations (1–3 ppm). Regionally, primary productivity increases due to increased iron deposition are often compensated by offsetting decreases downstream corresponding to equivalent changes in the rate of phytoplankton macronutrient uptake, particularly in the equatorial Pacific. These effects are weaker in the Southern Ocean, suggesting that changes in iron deposition in this region dominates the global carbon cycle and climate response.

    more » « less
  3. Abstract

    Phytoplankton iron contents (i.e., quotas) directly link biogeochemical cycles of iron and carbon and drive patterns of nutrient limitation, recycling, and export. Ocean biogeochemical models typically assume that iron quotas are either static or controlled by dissolved iron availability. We measured iron quotas in phytoplankton communities across nutrient gradients in the Pacific Ocean and found that quotas diverged significantly in taxon‐specific ways from laboratory‐derived predictions. Iron quotas varied 40‐fold across nutrient gradients, and nitrogen‐limitation allowed diatoms to accumulate fivefold more iron than co‐occurring flagellates even under low iron availability. Modeling indicates such “luxury” uptake is common in large regions of the low‐iron Pacific Ocean. Among diatoms, both pennate and centric genera accumulated luxury iron, but the cosmopolitan pennate genusPseudo‐nitzschiamaintained iron quotas 10‐fold higher than co‐occurring centric diatoms, likely due to enhanced iron storage. Biogeochemical models should account for taxonomic and macronutrient controls on phytoplankton iron quotas.

    more » « less
  4. Abstract

    Aluminum (Al) is delivered to surface ocean waters by aeolian dust, making it a promising tracer to constrain dust deposition rates and the atmospheric supply of trace metal micronutrients. Over recent years, dissolved Al has been mapped along the GEOTRACES transects, providing unparalleled coverage of the world ocean. However, inferring atmospheric input rates from these observations is complicated by a suite of additional processes that influence the Al distribution, including reversible particle scavenging, biological uptake by diatoms, hydrothermal sources, sediment resuspension. Here we employ a data‐assimilation model of the oceanic Al cycle that explicitly accounts for these processes, allowing the atmospheric signal to be extracted. We conduct an ensemble of model optimizations that test different dust deposition distributions and consider spatial variations in Al solubility, thereby inferring the atmospheric Al supply that is most consistent with GEOTRACES observations. We find that 37.2 ± 11.0 Gmol/yr of soluble Al is added to the global ocean, dominated in the Atlantic Ocean, and that Al fractional solubility varies strongly as a function of atmospheric dust concentration. Our model also suggests that 6.1 ± 2.4 Gmol Al/yr is injected from hydrothermal vents, and that vertical Al redistribution through the water column is dominated by abiotic reversible scavenging rather than uptake by diatoms. Our results have important implications for the oceanic iron (Fe) budget: based on the soluble Fe:Al ratio of dust, we infer that aeolian Fe inputs lie between 3.82 and 9.25 Gmol/yr globally, and fall short of the biological Fe demand in most ocean regions.

    more » « less
  5. Abstract

    Distinctively‐light isotopic signatures associated with Fe released from anthropogenic activity have been used to trace basin‐scale impacts. However, this approach is complicated by the way Fe cycle processes modulate oceanic dissolved Fe (dFe) signatures (δ56Fediss) post deposition. Here we include dust, wildfire, and anthropogenic aerosol Fe deposition in a global ocean biogeochemical model with active Fe isotope cycling, to quantify how anthropogenic Fe impacts surface ocean dFe and δ56Fediss. Using the North Pacific as a natural laboratory, the response of dFe, δ56Fediss, and primary productivity are spatially and seasonally variable and do not simply follow the footprint of atmospheric deposition. Instead, the effect of anthropogenic Fe is regulated by the biogeochemical regime, specifically the degree of Fe limitation and rates of primary production. Overall, we find that while δ56Fedissdoes trace anthropogenic input, the response is muted by fractionation during phytoplankton uptake, but amplified by other isotopically‐light Fe sources.

    more » « less