skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Infrared effects in the late stages of black hole evaporation
A bstract As a black hole evaporates, each outgoing Hawking quantum carries away some of the black holes asymptotic charges associated with the extended Bondi-Metzner-Sachs group. These include the Poincaré charges of energy, linear momentum, intrinsic angular momentum, and orbital angular momentum or center-of-mass charge, as well as extensions of these quantities associated with supertranslations and super-Lorentz transformations, namely supermomentum, superspin and super center-of-mass charges (also known as soft hair). Since each emitted quantum has fluctuations that are of order unity, fluctuations in the black hole’s charges grow over the course of the evaporation. We estimate the scale of these fluctuations using a simple model. The results are, in Planck units: (i) The black hole position has a uncertainty of $$ \sim {M}_i^2 $$ ∼ M i 2 at late times, where M i is the initial mass (previously found by Page). (ii) The black hole mass M has an uncertainty of order the mass M itself at the epoch when M ∼ $$ {M}_i^{2/3} $$ M i 2 / 3 , well before the Planck scale is reached. Correspondingly, the time at which the evaporation ends has an uncertainty of order $$ \sim {M}_i^2 $$ ∼ M i 2 . (iii) The supermomentum and superspin charges are not independent but are determined from the Poincaré charges and the super center-of-mass charges. (iv) The supertranslation that characterizes the super center-of-mass charges has fluctuations at multipole orders l of order unity that are of order unity in Planck units. At large l , there is a power law spectrum of fluctuations that extends up to l ∼ $$ {M}_i^2/M $$ M i 2 / M , beyond which the fluctuations fall off exponentially, with corresponding total rms shear tensor fluctuations ∼ M i M − 3/2 .  more » « less
Award ID(s):
1707800 2110463
PAR ID:
10342477
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
7
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Accretion discs around supermassive black holes are promising sites for stellar mass black hole mergers detectable with LIGO. Here we present the results of Monte Carlo simulations of black hole mergers within 1-d AGN disc models. For the spin distribution in the disc bulk, key findings are: (1) The distribution of χeff is naturally centred around $$\tilde{\chi }_{\rm eff} \approx 0.0$$, (2) the width of the χeff distribution is narrow for low natal spins. For the mass distribution in the disc bulk, key findings are: (3) mass ratios $$\tilde{q} \sim 0.5\!-\!0.7$$, (4) the maximum merger mass in the bulk is $$\sim 100\!-\!200\, \mathrm{M}_{\odot }$$, (5) $$\sim 1{{\ \rm per\ cent}}$$ of bulk mergers involve BH $$\gt 50\, \mathrm{M}_{\odot }$$ with (6) $$\simeq 80{{\ \rm per\ cent}}$$ of bulk mergers are pairs of first generation BH. Additionally, mergers at a migration trap grow an IMBH with typical merger mass ratios $$\tilde{q}\sim 0.1$$. Ongoing LIGO non-detections of black holes $$\gt 10^{2}\, \mathrm{M}_{\odot }$$ puts strong limits on the presence of migration traps in AGN discs (and therefore AGN disc density and structure) as well as median AGN disc lifetime. The highest merger rate occurs for this channel if AGN discs are relatively short-lived (≤1 Myr) so multiple AGN episodes can happen per Galactic nucleus in a Hubble time. 
    more » « less
  2. Abstract We study the spherical accretion of magnetized plasma with low angular momentum onto a supermassive black hole, utilizing global general relativistic magnetohydrodynamic simulations. Black hole-driven feedback in the form of magnetic eruptions and jets triggers magnetized turbulence in the surrounding medium. We find that when the Bondi radius exceeds a certain value relative to the black hole’s gravitational radius, this turbulence restricts the subsequent inflow of magnetic flux, strongly suppressing the strength of the jet. Consequently, magnetically arrested disks and powerful jets are not a generic outcome of the accretion of magnetized plasma, even if there is an abundance of magnetic flux available in the system. However, if there is significant angular momentum in the inflowing gas, the eruption-driven turbulence is suppressed (sheared out), allowing for the presence of a powerful jet. Both the initially rotating and nonrotating flows go through periods of low and high gas angular momentum, showing that the angular momentum content of the inflowing gas is not just a feature of the ambient medium, but is strongly modified by the eruption and jet-driven black hole feedback. In the lower-angular-momentum states, our results predict that there should be dynamically strong magnetic fields on horizon scales, but no powerful jet; this state may be consistent with Sgr A* in the Galactic center. 
    more » « less
  3. A bstract We derive a non-BPS linear ansatz using the charged Weyl formalism in string and M-theory backgrounds. Generic solutions are static and axially-symmetric with an arbitrary number of non-BPS sources corresponding to various brane, momentum and KKm charges. Regular sources are either four-charge non-extremal black holes or smooth non-BPS bubbles. We construct several families such as chains of non-extremal black holes or smooth non-BPS bubbling geometries and study their physics. The smooth horizonless geometries can have the same mass and charges as non-extremal black holes. Furthermore, we find examples that scale towards the four-charge BPS black hole when the non-BPS parameters are taken to be small, but the horizon is smoothly resolved by adding a small amount of non-extremality. 
    more » « less
  4. Abstract Black hole–neutron star binaries are of interest in many ways: they are intrinsically transient, radiate gravitational waves detectable by LIGO, and may produceγ-ray bursts. Although it has long been assumed that their late-stage orbital evolution is driven entirely by gravitational wave emission, we show here that in certain circumstances, mass transfer from the neutron star onto the black hole can both alter the binary's orbital evolution and significantly reduce the neutron star's mass: when the fraction of its mass transferred per orbit is ≳10−2, the neutron star's mass diminishes by order unity, leading to mergers in which the neutron star mass is exceptionally small. The mass transfer creates a gas disk around the black holebeforemerger that can be comparable in mass to the debris remaining after merger, i.e., ~0.1M. These processes are most important when the initial neutron star–black hole mass ratioqis in the range ≈0.2–0.8, the orbital semimajor axis is 40 ≲ a0/rg ≲ 300 (rg ≡ GMBH/c2), and the eccentricity is large ate0 ≳ 0.8. Systems of this sort may be generated through the dynamical evolution of a triple system, as well as by other means. 
    more » « less
  5. null (Ed.)
    ABSTRACT We report the discovery of the closest known black hole candidate as a binary companion to V723 Mon. V723 Mon is a nearby ($$d\sim 460\, \rm pc$$), bright (V ≃ 8.3 mag), evolved (Teff, giant ≃ 4440 K, and Lgiant ≃ 173 L⊙) red giant in a high mass function, f(M) = 1.72 ± 0.01 M⊙, nearly circular binary (P = 59.9 d, e ≃ 0). V723 Mon is a known variable star, previously classified as an eclipsing binary, but its All-Sky Automated Survey, Kilodegree Extremely Little Telescope, and Transiting Exoplanet Survey Satellite light curves are those of a nearly edge-on ellipsoidal variable. Detailed models of the light curves constrained by the period, radial velocities, and stellar temperature give an inclination of $$87.0^{\circ ^{+1.7^\circ }}_{-1.4^\circ }$$, a mass ratio of q ≃ 0.33 ± 0.02, a companion mass of Mcomp = 3.04 ± 0.06 M⊙, a stellar radius of Rgiant = 24.9 ± 0.7 R⊙, and a giant mass of Mgiant = 1.00 ± 0.07 M⊙. We identify a likely non-stellar, diffuse veiling component with contributions in the B and V band of $${\sim }63{{\ \rm per\ cent}}$$ and $${\sim }24{{\ \rm per\ cent}}$$, respectively. The SED and the absence of continuum eclipses imply that the companion mass must be dominated by a compact object. We do observe eclipses of the Balmer lines when the dark companion passes behind the giant, but their velocity spreads are low compared to observed accretion discs. The X-ray luminosity of the system is $$L_{\rm X}\simeq 7.6\times 10^{29}~\rm ergs~s^{-1}$$, corresponding to L/Ledd ∼ 10−9. The simplest explanation for the massive companion is a single compact object, most likely a black hole in the ‘mass gap’. 
    more » « less