skip to main content

This content will become publicly available on January 1, 2023

Title: Brown-York charges at null boundaries
A bstract The Brown-York stress tensor provides a means for defining quasilocal gravitational charges in subregions bounded by a timelike hypersurface. We consider the generalization of this stress tensor to null hypersurfaces. Such a stress tensor can be derived from the on-shell subregion action of general relativity associated with a Dirichlet variational principle, which fixes an induced Carroll structure on the null boundary. The formula for the mixed-index tensor T i j takes a remarkably simple form that is manifestly independent of the choice of auxiliary null vector at the null surface, and we compare this expression to previous proposals for null Brown-York stress tensors. The stress tensor we obtain satisfies a covariant conservation equation with respect to any connection induced from a rigging vector at the hypersurface, as a result of the null constraint equations. For transformations that act covariantly on the boundary structures, the Brown-York charges coincide with canonical charges constructed from a version of the Wald-Zoupas procedure. For anomalous transformations, the charges differ by an intrinsic functional of the boundary geometry, which we explicity verify for a set of symmetries associated with finite null hyper-surfaces. Applications of the null Brown-York stress tensor to symmetries of asymptotically flat more » spacetimes and celestial holography are discussed. « less
; ; ;
Award ID(s):
2110463 1707800
Publication Date:
Journal Name:
Journal of High Energy Physics
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract In a companion paper [1] we showed that the symmetry group $$ \mathfrak{G} $$ G of non-expanding horizons (NEHs) is a 1-dimensional extension of the Bondi-Metzner-Sachs group $$ \mathfrak{B} $$ B at $$ \mathcal{I} $$ I + . For each infinitesimal generator of $$ \mathfrak{G} $$ G , we now define a charge and a flux on NEHs as well as perturbed NEHs. The procedure uses the covariant phase space framework in presence of internal null boundaries $$ \mathcal{N} $$ N along the lines of [2–6]. However, $$ \mathcal{N} $$ N is required to be an NEH or a perturbed NEH. Consequently, charges and fluxes associated with generators of $$ \mathfrak{G} $$ G are free of physically unsatisfactory features that can arise if $$ \mathcal{N} $$ N is allowed to be a general null boundary. In particular, all fluxes vanish if $$ \mathcal{N} $$ N is an NEH, just as one would hope; and fluxes associated with symmetries representing ‘time-translations’ are positive definite on perturbed NEHs. These results hold for zero as well as non-zero cosmological constant. In the asymptotically flat case, as noted in [1], $$ \mathcal{I} $$ I ± are NEHs in the conformally completed space-timemore »but with an extra structure that reduces $$ \mathfrak{G} $$ G to $$ \mathfrak{B} $$ B . The flux expressions at $$ \mathcal{N} $$ N reflect this synergy between NEHs and $$ \mathcal{I} $$ I + . In a forthcoming paper, this close relation between NEHs and $$ \mathcal{I} $$ I + will be used to develop gravitational wave tomography, enabling one to deduce horizon dynamics directly from the waveforms at $$ \mathcal{I} $$ I + .« less
  2. Abstract We use the formalism developed by Wald and Zoupas to derive explicit covariant expressions for the charges and fluxes associated with the Bondi–Metzner–Sachs symmetries at null infinity in asymptotically flat spacetimes in vacuum general relativity. Our expressions hold in non-stationary regions of null infinity, are local and covariant, conformally-invariant, and are independent of the choice of foliation of null infinity and of the chosen extension of the symmetries away from null infinity. While similar expressions have appeared previously in the literature in Bondi–Sachs coordinates (to which we compare our own), such a choice of coordinates obscures these properties. Our covariant expressions can be used to obtain charge formulae in any choice of coordinates at null infinity. We also include detailed comparisons with other expressions for the charges and fluxes that have appeared in the literature: the Ashtekar–Streubel flux formula, the Komar formulae, and the linkage and twistor charge formulae. Such comparisons are easier to perform using our explicit expressions, instead of those which appear in the original work by Wald and Zoupas.
  3. Abstract

    We study the mean curvature flow in 3-dimensional null hypersurfaces. In a spacetime a hypersurface is called null, if its induced metric is degenerate. The speed of the mean curvature flow of spacelike surfaces in a null hypersurface is the projection of the codimension-two mean curvature vector onto the null hypersurface. We impose fairly mild conditions on the null hypersurface. Then for an outer un-trapped initial surface, a condition which resembles the mean-convexity of a surface in Euclidean space, we prove that the mean curvature flow exists for all times and converges smoothly to a marginally outer trapped surface (MOTS). As an application we obtain the existence of a global foliation of the past of an outermost MOTS, provided the null hypersurface admits an un-trapped foliation asymptotically.

  4. A bstract As a black hole evaporates, each outgoing Hawking quantum carries away some of the black holes asymptotic charges associated with the extended Bondi-Metzner-Sachs group. These include the Poincaré charges of energy, linear momentum, intrinsic angular momentum, and orbital angular momentum or center-of-mass charge, as well as extensions of these quantities associated with supertranslations and super-Lorentz transformations, namely supermomentum, superspin and super center-of-mass charges (also known as soft hair). Since each emitted quantum has fluctuations that are of order unity, fluctuations in the black hole’s charges grow over the course of the evaporation. We estimate the scale of these fluctuations using a simple model. The results are, in Planck units: (i) The black hole position has a uncertainty of $$ \sim {M}_i^2 $$ ∼ M i 2 at late times, where M i is the initial mass (previously found by Page). (ii) The black hole mass M has an uncertainty of order the mass M itself at the epoch when M ∼ $$ {M}_i^{2/3} $$ M i 2 / 3 , well before the Planck scale is reached. Correspondingly, the time at which the evaporation ends has an uncertainty of order $$ \sim {M}_i^2 $$ ∼ M i 2more ». (iii) The supermomentum and superspin charges are not independent but are determined from the Poincaré charges and the super center-of-mass charges. (iv) The supertranslation that characterizes the super center-of-mass charges has fluctuations at multipole orders l of order unity that are of order unity in Planck units. At large l , there is a power law spectrum of fluctuations that extends up to l ∼ $$ {M}_i^2/M $$ M i 2 / M , beyond which the fluctuations fall off exponentially, with corresponding total rms shear tensor fluctuations ∼ M i M − 3/2 .« less
  5. Generalizing from observed to new related environments (out-of-distribution) is central to the reliability of classifiers. However, most classifiers fail to predict label from input when the change in environment is due a (stochastic) input transformation not observed in training, as in training we observe , where is a hidden variable. This work argues that when the transformations in train and test are (arbitrary) symmetry transformations induced by a collection of known equivalence relations, the task of finding a robust OOD classifier can be defined as finding the simplest causal model that defines a causal connection between the target labels and the symmetry transformations that are associated with label changes. We then propose a new learning paradigm, asymmetry learning, that identifies which symmetries the classifier must break in order to correctly predict in both train and test. Asymmetry learning performs a causal model search that, under certain identifiability conditions, finds classifiers that perform equally well in-distribution and out-of-distribution. Finally, we show how to learn counterfactually-invariant representations with asymmetry learning in two physics tasks.