skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structural study of 1- and 2-naphthol: new insights into the non-covalent H–H interaction in cis -1-naphthol
Previous microwave studies of naphthol monomers were supplemented by measuring spectra of all 13 C mono-substituted isotopologues of the cis - and trans -conformers of 1-naphthol and 2-naphthol in their natural abundances. The resulting data were utilized to determine substitution structures and so-called semi-experimental effective structures. Results from electronic structure calculations show that the OH group of cis -1-naphthol points ≈6° out of plane, which is consistent with the inertial defect data of cis - and trans -1-naphthol. The non-planarity of cis -1-naphthol is a result of a close-contact H-atom–H-atom interaction. This type of H–H interaction has been the subject of much controversy in the past and we provide here an in-depth theoretical analysis of it. The naphthol system is particularly well-suited for such analysis as it provides internal standards with its four different isomers. The methods used include quantum theory of atoms in molecules, non-covalent interactions, independent gradient model, local vibrational mode, charge model 5, and natural bond orbital analyses. We demonstrate that the close-contact H–H interaction is neither a purely attractive nor repulsive interaction, but rather a mixture of the two.  more » « less
Award ID(s):
1464906
PAR ID:
10342517
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
24
Issue:
6
ISSN:
1463-9076
Page Range / eLocation ID:
3722 to 3732
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Structures at serine‐proline sites in proteins were analyzed using a combination of peptide synthesis with structural methods and bioinformatics analysis of the PDB. Dipeptides were synthesized with the proline derivative (2S,4S)‐(4‐iodophenyl)hydroxyproline [hyp(4‐I‐Ph)]. The crystal structure of Boc‐Ser‐hyp(4‐I‐Ph)‐OMe had two molecules in the unit cell. One molecule exhibitedcis‐proline and a type VIa2 β‐turn (BcisD). Thecis‐proline conformation was stabilized by a C–H/O interaction between Pro C–Hαand the Ser side‐chain oxygen. NMR data were consistent with stabilization ofcis‐proline by a C–H/O interaction in solution. The other crystallographically observed molecule hadtrans‐Pro and both residues in the PPII conformation. Two conformations were observed in the crystal structure of Ac‐Ser‐hyp(4‐I‐Ph)‐OMe, with Ser adopting PPII in one and the β conformation in the other, each with Pro in the δ conformation andtrans‐Pro. Structures at Ser‐Pro sequences were further examined via bioinformatics analysis of the PDB and via DFT calculations. Ser‐Pro versus Ala–Pro sequences were compared to identify bases for Ser stabilization of local structures. C–H/O interactions between the Ser side‐chain Oγand Pro C–Hαwere observed in 45% of structures with Ser‐cis‐Pro in the PDB, with nearly all Ser‐cis‐Pro structures adopting a type VI β‐turn. 53% of Ser‐trans‐Pro sequences exhibited main‐chain COi•••HNi+3or COi•••HNi+4hydrogen bonds, with Ser as theiresidue and Pro as thei + 1 residue. These structures were overwhelmingly either type I β‐turns or N‐terminal capping motifs on α‐helices or 310‐helices. These results indicate that Ser‐Pro sequences are particularly potent in favoring these structures. In each, Ser is in either the PPII or β conformation, with the Ser Oγcapable of engaging in a hydrogen bond with the amide N–H of thei + 2 (type I β‐turn or 310‐helix; Serχ1t) ori + 3 (α‐helix; Serχ1g+) residue. Non‐prolinecisamide bonds can also be stabilized by C–H/O interactions. 
    more » « less
  2. The reaction of the D1-silylidyne radical (SiD; X 2 Π) with phosphine (PH 3 ; X 1 A 1 ) was conducted in a crossed molecular beams machine under single collision conditions. Merging of the experimental results with ab initio electronic structure and statistical Rice–Ramsperger–Kassel–Marcus (RRKM) calculations indicates that the reaction is initiated by the barrierless formation of a van der Waals complex (i0) as well as intermediate (i1) formed via the barrierless addition of the SiD radical with its silicon atom to the non-bonding electron pair of phosphorus of the phosphine. Hydrogen shifts from the phosphorous atom to the adjacent silicon atom yield intermediates i2a, i2b, i3; unimolecular decomposition of these intermediates leads eventually to the formation of trans / cis -phosphinidenesilyl (HSiPH, p2/p4) and phosphinosilylidyne (SiPH 2 , p3) via hydrogen deuteride (HD) loss (experiment: 80 ± 11%, RRKM: 68.7%) and d - trans / cis -phosphinidenesilyl (DSiPH, p2′/p4′) plus molecular hydrogen (H 2 ) (experiment: 20 ± 7%, RRKM: 31.3%) through indirect scattering dynamics via tight exit transition states. Overall, the study reveals branching ratios of p2/p4/p2′/p4′ ( trans / cis HSiPH/DSiPH) to p3 (SiPH 2 ) of close to 4 : 1. The present study sheds light on the complex reaction dynamics of the silicon and phosphorous systems involving multiple atomic hydrogen migrations and tight exit transition states, thus opening up a versatile path to access the previously elusive phosphinidenesilyl and phosphinosilylidyne doublet radicals, which represent potential targets of future astronomical searches toward cold molecular clouds (TMC-1), star forming regions (Sgr(B2)), and circumstellar envelopes of carbon rich stars (IRC + 10216). 
    more » « less
  3. The gyroscope like dichloride complexes trans -Pt(Cl) 2 (P((CH 2 ) n ) 3 P) ( trans -2; n = c, 14; e, 18; g, 22) and MeLi (2 equiv.) react to yield the parachute like dimethyl complexes cis -Pt(Me) 2 (P((CH 2 ) n ) 3 P) ( cis -4c,e,g, 70–91%). HCl (1 equiv.) and cis -4c react to give cis -Pt(Cl)(Me)(P((CH 2 ) 14 ) 3 P) ( cis -5c, 83%), which upon stirring with silica gel or crystallization affords trans -5c (89%). Similar reactions of HCl and cis -4e,g give cis / trans -5e,g mixtures that upon stirring with silica gel yield trans -5e,g. A parallel sequence with trans -2c/EtLi gives cis -Pt(Et) 2 (P((CH 2 ) 14 ) 3 P) ( cis -6c, 85%) but subsequent reaction with HCl affords trans -Pt(Cl)(Et)(P((CH 2 ) 14 ) 3 P) ( trans -7c, 45%) directly. When previously reported cis -Pt(Ph) 2 (P((CH 2 ) 14 ) 3 P) is treated with HCl (1 equiv.), cis - and trans -Pt(Cl)(Ph)(P((CH 2 ) 14 ) 3 P) are isolated (44%, 29%), with the former converting to the latter at 100 °C. Reactions of trans -5c and LiBr or NaI afford the halide complexes trans -Pt(X)(Me)(P((CH 2 ) 14 ) 3 P) ( trans -9c, 88%; trans -10c, 87%). Thermolyses and DFT calculations that include acyclic model compounds establish trans > cis stabilities for all except the dialkyl complexes, for which energies can be closely spaced. The σ donor strengths of the non-phosphine ligands are assigned key roles in the trends. The crystal structures of cis -4c, trans -5c, trans -7c, and trans -10c are determined and analyzed together with the computed structures. 
    more » « less
  4. In proteins, proline-aromatic sequences exhibit increased frequencies of cis-proline amide bonds, via proposed C–H/π interactions between the aromatic ring and either the proline ring or the backbone C–Hα of the residue prior to proline. These interactions would be expected to result in tryptophan, as the most electron-rich aromatic residue, exhibiting the highest frequency of cis-proline. However, prior results from bioinformatics studies on proteins and experiments on proline-aromatic sequences in peptides have not revealed a clear correlation between the properties of the aromatic ring and the population of cis-proline. An investigation of the effects of aromatic residue (aromatic ring properties) on the conformation of proline-aromatic sequences was conducted using three distinct approaches: (1) NMR spectroscopy in model peptides of the sequence Ac-TGPAr-NH2 (Ar = encoded and unnatural aromatic amino acids); (2) bioinformatics analysis of structures in proline-aromatic sequences in the PDB; and (3) computational investigation using DFT and MP2 methods on models of proline-aromatic sequences and interactions. C–H/π and hydrophobic interactions were observed to stabilize local structures in both the trans-proline and cis-proline conformations, with both proline amide conformations exhibiting C–H/π interactions between the aromatic ring and Hα of the residue prior to proline (Hα-trans-Pro-aromatic and Hα-cis-Pro-aromatic interactions) and/or with the proline ring (trans-ProH-aromatic and cis-ProH-aromatic interactions). These C–H/π interactions were strongest with tryptophan (Trp) and weakest with cationic histidine (HisH+). Aromatic interactions with histidine were modulated in strength by His ionization state. Proline-aromatic sequences were associated with specific conformational poses, including type I and type VI β-turns. C–H/π interactions at the pre-proline Hα, which were stronger than interactions at Pro, stabilize normally less favorable conformations, including the ζ or αL conformations at the pre-proline residue, cis-proline, and/or the g+ χ1 rotamer or αL conformation at the aromatic residue. These results indicate that proline-aromatic sequences, especially Pro-Trp sequences, are loci to nucleate turns, helices, loops, and other local structures in proteins. These results also suggest that mutations that introduce proline-aromatic sequences, such as the R406W mutation that is associated with protein misfolding and aggregation in the microtubule-binding protein tau, might result in substantial induced structure, particularly in intrinsically disordered regions of proteins. 
    more » « less
  5. High-resolution direct absorption infrared spectra of metastable cis-formic acid (HCOOH) trapped in a cis-well resonance behind a 15 kcal/mol barrier are reported for the first time, with the energetically unstable conformer produced in a supersonic slit plasma expansion of trans-formic acid/H 2 mixtures. We present a detailed high-resolution rovibrational analysis for cis-formic acid species in the OH stretch ( ν 1 ) fundamental, providing first precision vibrational band origin, rotational constants, and term values, which in conjunction with ab initio calculations at the couple-cluster with single, double, and perturbative triple [CCSD(T)]/ANOn (n = 0, 1, 2) level support the experimental assignments and establish critical points on the potential energy surface for internal rotor trans-to-cis isomerization. Relative intensities for a- and b-type transitions observed in the spectra permit the transition dipole moment components to be determined in the body fixed frame and prove to be in good agreement with ab initio CCSD(T) theoretical estimates but in poor agreement with simple bond-dipole predictions. The observed signal dependence on H 2 in the discharge suggests the presence of a novel H atom radical chemical mechanism for strongly endothermic “up-hill” internal rotor isomerization between trans- and cis-formic acid conformers. 
    more » « less