Reaction of ( p -tol 3 P) 2 PtCl 2 and Me 3 Sn(CC) 2 SiMe 3 (1 : 1/THF/reflux) gives monosubstituted trans -Cl( p -tol 3 P) 2 Pt(CC) 2 SiMe 3 (63%), which with wet n -Bu 4 N + F − yields trans -Cl( p -tol 3 P) 2 Pt(CC) 2 H ( 2 , 96%). Hay oxidative homocoupling (O 2 /CuCl/TMEDA) gives all- trans -Cl( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 Cl ( 3 , 68%). Reaction of 3 and Me 3 Sn(CC) 2 SiMe 3 (1 : 1/rt) affords monosubstituted all- trans -Cl( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 (46%), which is converted by a similar desilylation/homocoupling sequence to all- trans -Cl[( p -tol 3 P) 2 Pt(CC) 4 ] 3 Pt(P p -tol 3 ) 2 Cl ( 7 ; 79%). Reaction of ( p -tol 3 P) 2 PtCl 2 and excess H(CC) 2 SiMe 3 (HNEt 2 /cat. CuI) gives trans -Me 3 Si(CC) 2 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 (78%), which with wet n -Bu 4 N + F − affords trans -H(CC) 2 Pt(P p -tol 3 ) 2 (CC) 2 H (96%). Hay oxidative cross coupling with 2 (1 : 4) gives all- trans -Cl[( p -tol 3 P) 2 Pt(CC) 4 ] 2 Pt(P p -tol 3 ) 2 Cl ( 10 , 36%) along with homocoupling product 3 (33%). Reaction of 3 and Me 3 Sn(CC) 2 SiMe 3 (1 : 2/rt) yields all- trans -Me 3 Si(CC) 2 ( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 ( 17 , 77%), which with wet n -Bu 4 N + F − gives all- trans -H(CC) 2 ( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 H (96%). Reaction of 3 and excess Me 3 P gives all- trans -Cl(Me 3 P) 2 Pt(CC) 4 Pt(PMe 3 ) 2 Cl ( 4 , 86%). A model reaction of trans -( p -tol)( p -tol 3 P) 2 PtCl and KSAc yields trans -( p -tol)( p -tol 3 P) 2 PtSAc ( 12 , 75%). Similar reactions of 3 , 7 , 10 , and 4 give all- trans -AcS[(R 3 P) 2 Pt(CC) 4 ] n Pt(PR 3 ) 2 SAc (76–91%). The crystal structures of 3 , 17 , and 12 are determined. The first exhibits a chlorine–chlorine distance of 17.42 Å; those in 10 and 7 are estimated as 30.3 Å and 43.1 Å.
more »
« less
Platinum( ii ) alkyl complexes of chelating dibridgehead diphosphines P((CH 2 ) n ) 3 P ( n = 14, 18, 22); facile cis / trans isomerizations interconverting gyroscope and parachute like adducts
The gyroscope like dichloride complexes trans -Pt(Cl) 2 (P((CH 2 ) n ) 3 P) ( trans -2; n = c, 14; e, 18; g, 22) and MeLi (2 equiv.) react to yield the parachute like dimethyl complexes cis -Pt(Me) 2 (P((CH 2 ) n ) 3 P) ( cis -4c,e,g, 70–91%). HCl (1 equiv.) and cis -4c react to give cis -Pt(Cl)(Me)(P((CH 2 ) 14 ) 3 P) ( cis -5c, 83%), which upon stirring with silica gel or crystallization affords trans -5c (89%). Similar reactions of HCl and cis -4e,g give cis / trans -5e,g mixtures that upon stirring with silica gel yield trans -5e,g. A parallel sequence with trans -2c/EtLi gives cis -Pt(Et) 2 (P((CH 2 ) 14 ) 3 P) ( cis -6c, 85%) but subsequent reaction with HCl affords trans -Pt(Cl)(Et)(P((CH 2 ) 14 ) 3 P) ( trans -7c, 45%) directly. When previously reported cis -Pt(Ph) 2 (P((CH 2 ) 14 ) 3 P) is treated with HCl (1 equiv.), cis - and trans -Pt(Cl)(Ph)(P((CH 2 ) 14 ) 3 P) are isolated (44%, 29%), with the former converting to the latter at 100 °C. Reactions of trans -5c and LiBr or NaI afford the halide complexes trans -Pt(X)(Me)(P((CH 2 ) 14 ) 3 P) ( trans -9c, 88%; trans -10c, 87%). Thermolyses and DFT calculations that include acyclic model compounds establish trans > cis stabilities for all except the dialkyl complexes, for which energies can be closely spaced. The σ donor strengths of the non-phosphine ligands are assigned key roles in the trends. The crystal structures of cis -4c, trans -5c, trans -7c, and trans -10c are determined and analyzed together with the computed structures.
more »
« less
- Award ID(s):
- 1900549
- PAR ID:
- 10343447
- Date Published:
- Journal Name:
- Dalton Transactions
- Volume:
- 50
- Issue:
- 36
- ISSN:
- 1477-9226
- Page Range / eLocation ID:
- 12457 to 12477
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The dialkyl malonate derived 1,3‐diphosphines R2C(CH2PPh2)2(R=a, Me;b, Et;c,n‐Bu;d,n‐Dec;e, Bn;f,p‐tolCH2) are combined with (p‐tol3P)2PtCl2ortrans‐(p‐tol3P)2Pt((C≡C)2H)2to give the chelatescis‐(R2C(CH2PPh2)2)PtCl2(2 a–f, 94–69 %) orcis‐(R2C(CH2PPh2)2)Pt((C≡C)2H)2(3 a–f, 97–54 %). Complexes3 a–dare also available from2 a–dand excess 1,3‐butadiyne in the presence of CuI (cat.) and excess HNEt2(87–65 %). Under similar conditions,2and3react to give the title compounds [(R2C(CH2PPh2)2)[Pt(C≡C)2]4(4 a–f; 89–14 % (64 % avg)), from which ammonium salts such as the co‐product [H2NEt2]+Cl−are challenging to remove. Crystal structures of4 a,bshow skew rhombus as opposed to square Pt4geometries. The NMR and IR properties of4 a–fare similar to those of mono‐ or diplatinum model compounds. However, cyclic voltammetry gives only irreversible oxidations. As compared to mono‐platinum or Pt(C≡C)2Pt species, the UV‐visible spectra show much more intense and red‐shifted bands. Time dependent DFT calculations define the transitions and principal orbitals involved. Electrostatic potential surface maps reveal strongly negative Pt4C16cores that likely facilitate ammonium cation binding. Analogous electronic properties of Pt3C12and Pt5C20homologs and selected equilibria are explored computationally.more » « less
-
Reactions of {(C 6 F 5 )Pt[S(CH 2 CH 2 -) 2 ](μ-Cl)} 2 and R 3 P yield the bis(phosphine) species trans -(C 6 F 5 )(R 3 P) 2 PtCl [R = Et ( Pt'Cl ), Ph, ( p -CF 3 C 6 H 4 ) 3 P; 88-81 %]. Additions of Pt'Cl and H(C≡C) n H ( n = 1, 2; HNEt 2 , 20 mol % CuI) give Pt'C 2 H (37 %, plus Pt'I , 16 %) and Pt'C 4 H (88 %). Homocoupling of Pt'C 4 H under Hay conditions (O 2 , CuCl, TMEDA, acetone) gives Pt'C 8 Pt' (85 %), but Pt'C 2 H affords only traces of Pt'C 4 Pt' . However, condensation of Pt'C 4 H and Pt'Cl (HNEt 2 , 20 mol % CuI) yields Pt'C 4 Pt' (97 %). Hay heterocouplings of Pt'C 4 H or trans -( p -tol)(Ph 3 P) 2 Pt(C≡C) 2 H ( Pt*C 4 H ) and excess HC≡CSiEt 3 give Pt'C 6 SiEt 3 (76 %) or Pt*C 6 SiEt 3 (89 %). The latter and wet n -Bu 4 N + F - react to yield labile Pt*C 6 H (60 %). Hay homocouplings of Pt*C 4 H and Pt*C 6 H give Pt*C 8 Pt* (64 %) and Pt*C 12 Pt* (64 %). Reaction of trans -(C 6 F 5 )( p -tol 3 P) 2 PtCl ( PtCl ) and HC≡CH (HNEt 2 , 20 mol % CuI) yields only traces of PtC 2 H . However, an analogous reaction with HC≡CSiMe 3 gives PtC 2 SiMe 3 (75 %), which upon treatment with silica yields PtC 2 H (77 %). An analogous coupling of trans -(C 6 F 5 )(Ph 3 P) 2 PtCl with H(C≡C) 2 H gives trans -(C 6 F 5 )(Ph 3 P) 2 Pt(C≡C) 2 H (34 %). Advantages and disadvantages of the various trans -(Ar)(R 3 P) 2 Pt end-groups are analyzed.more » « less
-
Three routes are explored to the title halide/cyanide complexes trans -Fe(CO)(NO)(X)(P((CH 2 ) 14 ) 3 P) ( 9c-X ; X = Cl/Br/I/CN), the Fe(CO)(NO)(X) moieties of which can rotate within the diphosphine cages (Δ H ‡ /Δ S ‡ (kcal mol −1 /eu −1 ) 5.9/−20.4 and 7.4/−23.9 for 9c-Cl and 9c-I from variable temperature 13 C NMR spectra). First, reactions of the known cationic complex trans -[Fe(CO) 2 (NO)(P((CH 2 ) 14 ) 3 P)] + BF 4 − and Bu 4 N + X − give 9c-Cl /- Br /- I /- CN (75–83%). Second, reactions of the acyclic complexes trans -Fe(CO)(NO)(X)(P((CH 2 ) m CHCH 2 ) 3 ) 2 and Grubbs’ catalyst afford the tris(cycloalkenes) trans -Fe(CO)(NO)(X)(P((CH 2 ) m CHCH(CH 2 ) m ) 3 P) ( m /X = 6/Cl,Br,I,CN, 7/Cl,Br, 8/Cl,Br) as mixtures of Z / E isomers (24–41%). Third, similar reactions of trans -[Fe(CO) 2 (NO)(P((CH 2 ) m CHCH 2 ) 3 ) 2 ] + BF 4 − and Grubbs’ catalyst afford crude trans -[Fe(CO) 2 (NO)P((CH 2 ) m CHCH(CH 2 ) m ) 3 P)] + BF 4 − ( m = 6, 8). However, the CC hydrogenations required to consummate routes 2 and 3 are problematic. Crystal structures of 9c-Cl /- Br /- CN are determined. Although the CO/NO/X ligands are disordered, the void space within the diphosphine cages is analyzed in terms of horizontal and vertical constraints upon Fe(CO)(NO)(X) rotation and the NMR data. The molecules pack in identical motifs with parallel P–Fe–P axes, and without intermolecular impediments to rotation in the solid state.more » « less
-
Abstract Coordination complexes of general formulatrans‐[MX2(R2ECH2CH2ER2)2] (MII=Ti, V, Cr, Mn; E=N or P; R=alkyl or aryl) are a cornerstone of coordination and organometallic chemistry. We investigate the electronic properties of two such complexes,trans‐[VCl2(tmeda)2] andtrans‐[VCl2(dmpe)2], which thus representtrans‐[MX2(R2ECH2CH2ER2)2] where M=V, X=Cl, R=Me and E=N (tmeda) and P (dmpe). These VIIcomplexes haveS=3/2 ground states, as expected for octahedral d3. Their tetragonal distortion leads to zero‐field splitting (zfs) that is modest in magnitude (D≈0.3 cm−1) relative to analogousS=1 TiIIand CrIIcomplexes. This parameter was determined from conventional EPR spectroscopy, but more effectively from high‐frequency and ‐field EPR (HFEPR) that determined the sign ofDas negative for the diamine complex, but positive for the diphosphine, which information had not been known for anytrans‐[VX2(R2ECH2CH2ER2)2] systems. The ligand‐field parameters oftrans‐[VCl2(tmeda)2] andtrans‐[VCl2(dmpe)2] are obtained using both classical theory andab initioquantum chemical theory. The results shed light not only on the electronic structure of VIIin this environment, but also on differences between N and P donor ligands, a key comparison in coordination chemistry.more » « less