skip to main content

Title: Bonding in nitrile photo-dissociating ruthenium drug candidates—A local vibrational mode study
In this work, we investigated bonding features of 15 ruthenium(II) nitrile complexes of the type [Ru(tpy)(L)-(CH 3 CN)] n+ , containing the tridentate tpy ligand (tpy = 2,2′:6′,2″-terpyridine) and various bidentate ancillary ligands L; 12 compounds originally synthesized by Loftus et al. [J. Phys. Chem. C 123, 10291–10299 (2019)] and three new complexes. We utilized local vibrational force constants derived from the local mode theory as a quantitative measure of bond strength complemented with the topological analysis of the electron density and the natural bond orbital analysis. Loftus et al. suggested that nitrile dissociation occurs after light induced singlet–triplet transition of the original complexes and they used as a measure of nitrile release efficiency quantum yields for ligand exchange in water. They observed larger quantum yields for complexes with smaller singlet–triplet energy gaps. The major goal of this work was to assess how the Ru–NC and Ru–L bond strengths in these 15 compounds relate to and explain the experimental data of Loftus et al., particularly focusing on the question whether there is a direct correlation between Ru–NC bond strength and measured quantum yield. Our study provides the interesting result that the compounds with the highest quantum yields also have the strongest Ru–NC bonds suggesting that breaking the Ru–NC bond is not the driving force for the delivery process rather than the change of the metal framework as revealed by first results of a unified reaction valley approach investigation of the mechanism. Compounds with the highest quantum yield show larger electronic structure changes upon singlet–triplet excitation, i.e., larger changes in bond strength, covalency, and difference between the singlet and triplet HOMOs, with exception of the compound 12. In summary, this work provides new insights into the interplay of local properties and experimental quantum yields forming in synergy a useful tool for fine tuning of existing and future design of new nitrile releasing ruthenium compounds. We hope that this work will bring theoretical and experimental studies closer together and serves as an incubator for future collaboration between computational chemists and their experimental colleagues.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Journal of Chemical Physics
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this

    We report the synthesis, photochemical and biological characterization of two new Ru(II) photoactivated complexes based on [Ru(tpy)(Me2bpy)(L)]2+(tpy = 2,2':6',2''‐terpyridine, Me2bpy = 6,6'‐dimethyl‐2,2'‐bipyridine), where L = pyridyl‐BODIPY (pyBOD). Two pyBOD ligands were prepared bearing flanking hydrogen or iodine atoms. Ru(II)‐bound BODIPY dyes show a red‐shift of absorption maxima relative to the free dyes and undergo photodissociation of BODIPY ligands with green light irradiation. Addition of iodine into the BODIPY ligand facilitates intersystem crossing, which leads to efficient singlet oxygen production in the free dye, but also enhances quantum yield of release of the BODIPY ligand from Ru(II). This represents the first report of a strategy to enhance photodissociation quantum yields through the heavy‐atom effect in Ru(II) complexes. Furthermore, Ru(II)‐bound BODIPY dyes display fluorescence turn‐on once released, with a lead analog showing nanomolar EC50values against triple negative breast cancer cells, >100‐fold phototherapeutic indexes under green light irradiation, and higher selectivity toward cancer cells as compared to normal cells than the corresponding free BODIPY photosensitizer. Conventional Ru(II) photoactivated complexes require nonbiorthogonal blue light for activation and rarely show submicromolar potency to achieve cell death. Our study represents an avenue for the improved photochemistry and potency of future Ru(II) complexes.

    more » « less

    We report new ruthenium complexes bearing the lipophilic bathophenanthroline (BPhen) ligand and dihydroxybipyridine (dhbp) ligands which differ in the placement of the OH groups ([(BPhen)2Ru(n,n′‐dhbp)]Cl2withn = 6 and 4 in 1Aand 2A, respectively). Full characterization data are reported for 1Aand 2Aand single crystal X‐ray diffraction for 1A. Both 1Aand 2Aare diprotic acids. We have studied 1A, 1B, 2A, and 2B(B = deprotonated forms) by UV‐vis spectroscopy and 1 photodissociates, but 2 is light stable. Luminescence studies reveal that the basic forms have lower energy3MLCT states relative to the acidic forms. Complexes 1Aand 2Aproduce singlet oxygen with quantum yields of 0.05 and 0.68, respectively, in acetonitrile. Complexes 1 and 2 are both photocytotoxic toward breast cancer cells, with complex 2 showing EC50light values as low as 0.50 μM with PI values as high as >200vs. MCF7. Computational studies were used to predict the energies of the3MLCT and3MC states. An inaccessible3MC state for 2Bsuggests a rationale for why photodissociation does not occur with the 4,4′‐dhbp ligand. Low dark toxicity combined with an accessible3MLCT state for1O2generation explains the excellent photocytotoxicity of 2.

    more » « less
  3. Abstract

    Ru(II) complexes were synthesized with π‐expanding (phenyl, fluorenyl, phenanthrenyl, naphthalen‐1‐yl, naphthalene‐2‐yl, anthryl and pyrenyl groups) attached at a 1H‐imidazo[4,5‐f][1,10]phenanthroline ligand and 4,4′‐dimethyl‐2,2′‐bipyridine (4,4′‐dmb) coligands. These Ru(II) complexes were characterized by 1D and 2D NMR, and mass spectroscopy, and studied for visible light and dark toxicity to human malignant melanoma SK‐MEL‐28 cells. In the SK‐MEL‐28 cells, the Ru(II) complexes are highly phototoxic (EC50 = 0.2–0.5 µm) and have low dark toxicity (EC50 = 58–230 µm). The highest phototherapeutic index (PI) of the series was found with the Ru(II) complex bearing the 2‐(pyren‐1‐yl)‐1H‐imidazo[4,5‐f][1,10]phenanthroline ligand. This high PI is in part attributed to the π‐rich character added by the pyrenyl group, and a possible low‐lying and longer‐lived3IL state due to equilibration with the3MLCT state. While this pyrenyl Ru(II) complex possessed a relatively high quantum yield for singlet oxygen formation (Φ = 0.84), contributions from type‐I processes (oxygen radicals and radical ions) are competitive with the type‐II (1O2) process based on effects of added sodium azide and solvent deuteration.

    more » « less
  4. The bis(aminophenol) 2,2′-biphenylbis(3,5-di- tert -butyl-2-hydroxyphenylamine) (ClipH 4 ) forms trans -(Clip)Os(py) 2 upon aerobic reaction of the ligand with {( p -cymene)OsCl 2 } 2 in the presence of pyridine and triethylamine. A more oxidized species, cis -β-(Clip)Os(OCH 2 CH 2 O), is formed from reaction of the ligand with the osmium( vi ) complex OsO(OCH 2 CH 2 O) 2 , and reacts with Me 3 SiCl to give the chloro complex cis -β-(Clip)OsCl 2 . Octahedral osmium and ruthenium tris-iminoxolene complexes are formed from the chelating ligand tris(2-(3′,5′-di- tert -butyl-2′-hydroxyphenyl)amino-4-methylphenyl)amine (MeClampH 6 ) on aerobic reaction with divalent metal precursors. The complexes’ structural and electronic features are well described using a simple bonding model that emphasizes the covalency of the π bonding between the metal and iminoxolene ligands rather than attempting to dissect the parts into discrete oxidation states. Emphasizing the continuity of bonding between disparate complexes, the structural data from a variety of Os and Ru complexes show good correlations to π bond order, and the response of the intraligand bond distances to the bond order can be analyzed to illuminate the polarity of the bonding between metal and the redox-active orbital on the iminoxolenes. The osmium compounds’ π bonding orbitals are about 40% metal-centered and 60% ligand-centered, with the ruthenium compounds’ orbitals about 65% metal-centered and 35% ligand-centered. 
    more » « less
  5. The synthesis, photophysics, and electrochemiluminescence (ECL) of four water-soluble dinuclear Ir( iii ) and Ru( ii ) complexes (1–4) terminally-capped by 4′-phenyl-2,2′:6′,2′′-terpyridine (tpy) or 1,3-di(pyrid-2-yl)-4,6-dimethylbenzene (N^C^N) ligands and linked by a 2,7-bis(2,2′:6′,2′′-terpyridyl)fluorene with oligoether chains on C9 are reported. The impact of the tpy or N^C^N ligands and metal centers on the photophysical properties of 1–4 was assessed by spectroscopic methods including UV-vis absorption, emission, and transient absorption, and by time-dependent density functional theory (TDDFT) calculations. These complexes exhibited distinct singlet and triplet excited-state properties upon variation of the terminal-capping terdentate ligands and the metal centers. The ECL properties of complexes 1–3 with better water solubility were investigated in neutral phosphate buffer solutions (PBS) by adding tripropylamine (TPA) as a co-reactant, and the observed ECL intensity followed the descending order of 3 > 1 > 2. Complex 3 bearing the [Ru(tpy) 2 ] 2+ units displayed more pronounced ECL signals, giving its analogues great potential for further ECL study. 
    more » « less