skip to main content


Title: Uranium: The Nuclear Fuel Cycle and Beyond
This review summarizes the recent developments regarding the use of uranium as nuclear fuel, including recycling and health aspects, elucidated from a chemical point of view, i.e., emphasizing the rich uranium coordination chemistry, which has also raised interest in using uranium compounds in synthesis and catalysis. A number of novel uranium coordination features are addressed, such the emerging number of U(II) complexes and uranium nitride complexes as a promising class of materials for more efficient and safer nuclear fuels. The current discussion about uranium triple bonds is addressed by quantum chemical investigations using local vibrational mode force constants as quantitative bond strength descriptors based on vibrational spectroscopy. The local mode analysis of selected uranium nitrides, N≡U≡N, U≡N, N≡U=NH and N≡U=O, could confirm and quantify, for the first time, that these molecules exhibit a UN triple bond as hypothesized in the literature. We hope that this review will inspire the community interested in uranium chemistry and will serve as an incubator for fruitful collaborations between theory and experimentation in exploring the wealth of uranium chemistry.  more » « less
Award ID(s):
2102461
NSF-PAR ID:
10342537
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
23
Issue:
9
ISSN:
1422-0067
Page Range / eLocation ID:
4655
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Titanite has the ability to incorporate significant amounts of common Pb, which leads to uncertainty when applying the U-Pb decay series for geochronology. The isobaric interference of 204Hg on 204Pb poses an additional complexity in applying common Pb corrections. Here we investigate the removal of 204Hg interferences during titanite U-Pb dating using reaction cell gas chemistry via triple quadrupole mass spectrometry. U-Pb dates were determined for the natural titanite reference materials MKED-1 and BLR1 using an ESI NWR193UC excimer laser coupled to an Agilent 8900 ‘triple quad’ mass spectrometer. The 8900 is equipped with an octopole collision/reaction cell, which enables online interference removal. Two experiments were run, one in which we collected data in NoGas mode, and one in which NH3 was used as a reaction cell gas in MS/MS mode, in order to assess the feasibility of determining U/Pb ratios with mass shifted isotopes. In all experiments, a signal smoothing device was placed inline just before the ICP-MS interface, downstream from the addition of the Ar nebulizer gas to the He carrier gas stream. For the NoGas experiment, titanite was ablated using a 25 µm spot, with a beam energy density of 3 J/cm2, and a pulse rate of 4 Hz. In NoGas mode, signal intensities for the isotopes 201Hg, 202Hg, 204Pb, 206Pb, 207Pb, 232Th, 235U, and 238U were counted. In MS/MS mode, titanite was ablated using a 40 µm spot, with a beam energy density of 5 J/cm2, and a pulse rate of 4 Hz. A larger spot size in this experiment was used to counteract the decrease in signal intensity due to use of the reaction cell. In MS/MS mode, NH3 was flowed through the reaction cell in order to enable a charge transfer reaction between NH3 and Hg+, effectively neutralizing Hg. The isotopes 201Hg, 202Hg, 204Pb, 206Pb, and 207Pb were measured on-mass, as the isotopes of Pb are not affected by the NH3 gas. Uranium and Th both exhibit partial reaction with NH3 gas; therefore, the isotopes 232Th, 235U, and 238U were measured mass-shifted up 15 mass units, at masses 247, 250, and 253 respectively. Ratios of 207Pb/235U, 206Pb/238U, and 207Pb/206Pb were determined using the UPbGeochron4 DRS in Iolite (v.3.71) with MKED-1 as the primary reference material. Dates were calculated using IsoplotR by applying the Stacey-Kramers correction for common Pb. All isotopes of Hg were effectively neutralized by the NH3 charge transfer reaction in MS/MS mode; zero counts were detected for Hg isotopes. Dates for the BLR-1 titanite were 1050.55 ± 2.72 (2σ, n=12) Ma in NoGas mode, and 1048 ± 1.88 (2σ, n=15) Ma in MS/MS mode. These dates are in excellent agreement with the TIMS 206Pb/238U date for the BLR-1 titanite of 1047.1 ± 0.4 Ma. This method has the potential to enable measurement of 204Pb without needing to correct for Hg interferences. 
    more » « less
  2. Abstract

    Modern vibrational spectroscopy is more than just an analytical tool. Information about the electronic structure of a molecule, the strength of its bonds, and its conformational flexibility is encoded in the normal vibrational modes. On the other hand, normal vibrational modes are generally delocalized, which hinders the direct access to this information, attainable only via local vibration modes and associated local properties. Konkoli and Cremer provided an ingenious solution to this problem by deriving local vibrational modes from the fundamental normal modes, obtained in the harmonic approximation of the potential, via mass‐decoupled Euler–Lagrange equations. This review gives a general introduction into the local vibrational mode theory of Konkoli and Cremer, elucidating how this theory unifies earlier attempts to obtain easy to interpret chemical information from vibrational spectroscopy: (a) the local mode theory furnishes bond strength descriptors derived from force constant matrices with a physical basis, (b) provides the highly sought after extension of the Badger rule to polyatomic molecules, (c) and offers a simpler way to derive localized vibrations compared to the complex route via overtone spectroscopy. Successful applications are presented, including a new measure of bond strength, a new detailed analysis of infrared/Raman spectra, and the recent extension to periodic systems, opening a new avenue for the characterization of bonding in crystals. At the end of this review the LMODEA software is introduced, which performs the local mode analysis (with minimal computational costs) after a harmonic vibrational frequency calculation optionally using measured frequencies as additional input.

    This article is categorized under:

    Structure and Mechanism > Molecular Structures

    Theoretical and Physical Chemistry > Spectroscopy

    Software > Quantum Chemistry

    Electronic Structure Theory > Ab Initio Electronic Structure Methods

     
    more » « less
  3. Abstract

    The synthesis and characterization of sterically unencumbered homoleptic organouranium aryl complexes containing U−C σ‐bonds has been of interest to the chemical community for over 70 years. Reported herein are the first structurally characterized, sterically unencumbered homoleptic uranium (IV) aryl‐ate species of the form [U(Ar)6]2−(Ar=Ph,p‐tolyl,p‐Cl‐Ph). Magnetic circular dichroism (MCD) spectroscopy and computational studies provide insight into electronic structure and bonding interactions in the U−C σ‐bond across this series of complexes. Overall, these studies solve a decades‐long challenge in synthetic uranium chemistry, enabling new insight into electronic structure and bonding in organouranium complexes.

     
    more » « less
  4. Abstract

    The synthesis and characterization of sterically unencumbered homoleptic organouranium aryl complexes containing U−C σ‐bonds has been of interest to the chemical community for over 70 years. Reported herein are the first structurally characterized, sterically unencumbered homoleptic uranium (IV) aryl‐ate species of the form [U(Ar)6]2−(Ar=Ph,p‐tolyl,p‐Cl‐Ph). Magnetic circular dichroism (MCD) spectroscopy and computational studies provide insight into electronic structure and bonding interactions in the U−C σ‐bond across this series of complexes. Overall, these studies solve a decades‐long challenge in synthetic uranium chemistry, enabling new insight into electronic structure and bonding in organouranium complexes.

     
    more » « less
  5. Information resulting from a comprehensive investigation into the intrinsic strengths of hydrated divalent magnesium clusters is useful for elucidating the role of aqueous solvents on the Mg2+ ion, which can be related to those in bulk aqueous solution. However, the intrinsic Mg–O and intermolecular hydrogen bond interactions of hydrated magnesium ion clusters have yet to be quantitatively measured. In this work, we investigated a set of 17 hydrated divalent magnesium clusters by means of local vibrational mode force constants calculated at the ωB97X-D/6-311++G(d,p) level of theory, where the nature of the ion–solvent and solvent–solvent interactions were interpreted from topological electron density analysis and natural population analysis. We found the intrinsic strength of inner shell Mg–O interactions for [Mg(H2O)n]2+ (n = 1–6) clusters to relate to the electron density at the bond critical point in Mg–O bonds. From the application of a secondary hydration shell to [Mg(H2O)n]2+ (n = 5–6) clusters, stronger Mg–O interactions were observed to correspond to larger instances of charge transfer between the lp(O) orbitals of the inner hydration shell and the unfilled valence shell of Mg. As the charge transfer between water molecules of the first and second solvent shell increased, so did the strength of their intermolecular hydrogen bonds (HBs). Cumulative local vibrational mode force constants of explicitly solvated Mg2+, having an outer hydration shell, reveal a CN of 5, rather than a CN of 6, to yield slightly more stable configurations in some instances. However, the cumulative local mode stretching force constants of implicitly solvated Mg2+ show the six-coordinated cluster to be the most stable. These results show that such intrinsic bond strength measures for Mg–O and HBs offer an effective way for determining the coordination number of hydrated magnesium ion clusters. 
    more » « less