skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Triple Inverse Sandwich versus End-On Diazenido: Bonding Motifs across a Series of Rhenium–Lanthanide and –Actinide Complexes
While synthesizing a series of rhenium–lanthanide triple inverse sandwich complexes, we unexpectedly uncovered evidence for rare examples of end-on lanthanide dinitrogen coordination for certain heavy lanthanide elements as well as for uranium. We begin our report with the synthesis and characterization of a series of trirhenium triple inverse sandwich complexes with the early lanthanides, Ln[(μ-η5:η5-Cp)Re(BDI)]3(THF) (1-Ln, Ln = La, Ce, Pr, Nd, Sm; Cp = cyclopentadienide, BDI = N,N′-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate). However, as we moved across the lanthanide series, we ran into an unexpected result for gadolinium in which we structurally characterized two products for gadolinium, namely, 1-Gd (analogous to 1-Ln) and a diazenido dirhenium double inverse sandwich complex Gd[(μ-η1:η1-N2)Re(η5-Cp)(BDI)][(μ-η5:η5-Cp)Re(BDI)]2(THF)2 (2-Gd). Evidence for analogues of 2-Gd was spectroscopically observed for other heavy lanthanides (2-Ln, Ln = Tb, Dy, Er), and, in the case of 2-Er, structurally authenticated. These complexes represent the first observed examples of heterobimetallic end-on lanthanide dinitrogen coordination. Density functional theory (DFT) calculations were utilized to probe relevant bonding interactions and reveal energetic differences between both the experimental and putative 1-Ln and 2-Ln complexes. We also present additional examples of novel end-on heterobimetallic lanthanide and actinide diazenido moieties in the erbium–rhenium complex (η8-COT)Er[(μ-η1:η1-N2)Re(η5-Cp)(BDI)](THF)(Et2O) (3-Er) and uranium–rhenium complex [Na(2.2.2-cryptand)][(η5-C5H4SiMe3)3U(μ-η1:η1-N2)Re(η5-Cp)(BDI)] (4-U). Finally, we expand the scope of rhenium inverse sandwich coordination by synthesizing divalent double inverse sandwich complex Yb[(μ-η5:η5-Cp)Re(BDI)]2(THF)2 (5-Yb), as well as base-free, homoleptic rhenium–rare earth triple inverse sandwich complex Y[(μ-η5:η5-Cp)Re(BDI)]3 (6-Y).  more » « less
Award ID(s):
1954612
PAR ID:
10524204
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ACS
Date Published:
Journal Name:
Inorganic Chemistry
Volume:
63
Issue:
16
ISSN:
0020-1669
Page Range / eLocation ID:
7177 to 7188
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Salt metathesis reactions between a low-valent rhenium( i ) complex, Na[Re(η 5 -Cp)(BDI)] (BDI = N , N ′-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate), and a series of amidinate-supported tetrylenes of the form ECl[PhC(N t Bu) 2 ] (E = Si, Ge, Sn) led to rhenium metallotetrylenes Re(E[PhC(N t Bu) 2 ])(η 5 -Cp)(BDI) (E = Si ( 1a ), Ge ( 2 ), Sn ( 4 )) with varying extents of Re–E multiple bonding. Whereas the rhenium–stannylene 4 adopts a σ-metallotetrylene arrangement featuring a Re–E single bond, the rhenium–silylene ( 1a ) and –germylene ( 2 ) both engage in π-interactions to form short Re–E multiple bonds. Temperature was found to play a crucial role in reactions between Na[Re(η 5 -Cp)(BDI)] and SiCl[PhC(N t Bu) 2 ], as manipulation of reaction conditions led to isolation of an unusual rhenium–silane, (BDI)Re(μ-η 5 :η 1 -C 5 H 4 )(SiH[PhC(N t Bu) 2 ]) ( 1b ) and a dinitrogen bridged rhenium–silylene, (η 5 -Cp)(BDI)Re(μ-N 2 )Si[PhC(N t Bu) 2 ] ( 1c ), in addition to 1a . Finally, the reaction of Na[Re(η 5 -Cp)(BDI)] with GeCl 2 ·dioxane led to a rare μ 2 -tetrelido complex, μ 2 -Ge[Re(η 5 -Cp)(BDI)] 2 ( 3 ). Bonding interactions within these complexes are discussed through the lens of various spectroscopic, structural, and computational investigations. 
    more » « less
  2. The reduction potentials (reported vs. Fc + /Fc) for a series of Cp′ 3 Ln complexes (Cp′ = C 5 H 4 SiMe 3 , Ln = lanthanide) were determined via electrochemistry in THF with [ n Bu 4 N][BPh 4 ] as the supporting electrolyte. The Ln( iii )/Ln( ii ) reduction potentials for Ln = Eu, Yb, Sm, and Tm (−1.07 to −2.83 V) follow the expected trend for stability of 4f 7 , 4f 14 , 4f 6 , and 4f 13 Ln( ii ) ions, respectively. The reduction potentials for Ln = Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu, that form 4f n 5d 1 Ln( ii ) ions ( n = 2–14), fall in a narrow range of −2.95 V to −3.14 V. Only cathodic events were observed for La and Ce at −3.36 V and −3.43 V, respectively. The reduction potentials of the Ln( ii ) compounds [K(2.2.2-cryptand)][Cp′ 3 Ln] (Ln = Pr, Sm, Eu) match those of the Cp′ 3 Ln complexes. The reduction potentials of nine (C 5 Me 4 H) 3 Ln complexes were also studied and found to be 0.05–0.24 V more negative than those of the Cp′ 3 Ln compounds. 
    more » « less
  3. Paul Chirik (Ed.)
    The complex [(BDI)VCl(N{SiMe3}2)] (1) (BDI– = [ArNC(CH3)]2CH, Ar = 2,6-iPr2C6H3), a precursor readily prepared from metathesis of [(BDI)VCl2] and Na[N{SiMe3}2], can be reduced with Na/NaCl in the presence of white P4 to form a dinuclear species containing two VIII centers bridged by a tricyclic [P6]2– scaffold, namely, [(BDI)V(N{SiMe3}2)]2(μ-η1:η1-P6) (2). Coordination of [P6]2– involves a unique chairlike μ-η1:η1 binding mode with a contiguous tricyclic hexaphosphorus unit bridging across the two V centers. Complexes 1 and 2 have been structurally characterized, and a pathway toward the formation of the chairlike tricyclic [P6]2– scaffold in 2 is proposed. 
    more » « less
  4. Metal-metal bonding interactions can engender outstanding magnetic properties in bulk materials and molecules, and examples abound for the transition metals. Extending this paradigm to the lanthanides, herein we report mixed-valence dilanthanide complexes (Cp iPr5 ) 2 Ln 2 I 3 (Ln is Gd, Tb, or Dy; Cp i Pr5 , pentaisopropylcyclopentadienyl), which feature a singly occupied lanthanide-lanthanide σ-bonding orbital of 5 d z 2 parentage, as determined by structural, spectroscopic, and computational analyses. Valence delocalization, wherein the d electron is equally shared by the two lanthanide centers, imparts strong parallel alignment of the σ-bonding and f electrons on both lanthanides according to Hund’s rules. The combination of a well-isolated high-spin ground state and large magnetic anisotropy in (Cp iPr5 ) 2 Dy 2 I 3 gives rise to an enormous coercive magnetic field with a lower bound of 14 tesla at temperatures as high as 60 kelvin. 
    more » « less
  5. The synthesis of a novel family of homoleptic COT-based heterotrimetallic self-assemblies bearing the formula [LnKCa(COT) 3 (THF) 3 ] (Ln( iii ) = Gd, Tb, Dy, Ho, Er, Tm, and Yb) is reported followed by their X-ray crystallographic and magnetic characterization. All crystals conform to the monoclinic P 2 1 / c space group with a slight compression of the unit cell from 3396.4(2) Å 3 to 3373.2(4) Å 3 along the series. All complexes exhibit a triple-decker structure having the Ln( iii ) and K( i ) ions sandwiched by three COT 2− ligands with an end-bound {Ca 2+ (THF) 3 } moiety to form a non-linear (153.5°) arrangement of three different metals. The COT 2− ligands act in a η 8 -mode with respect to all metal centers. A detailed structural comparison of this unique set of heterotrimetallic complexes has revealed consistent trends along the series. From Gd to Yb, the Ln to ring-centroid distance decreases from 1.961(3) Å to 1.827(2) Å. In contrast, the separation of K( i ) and Ca( ii ) ions from the COT-centroid (2.443(3) and 1.914(3) Å, respectively) is not affected by the change of Ln( iii ) ions. The magnetic property investigation of the [LnKCa(COT) 3 (THF) 3 ] series (Ln( iii ) = Gd, Tb, Dy, Ho, Er, and Tm) reveals that the Dy, Er, and Tm complexes display slow relaxation of their magnetization, in other words, single-molecule magnet (SMM) properties. This behaviour is dominated by thermally activated (Orbach-like) and quantum tunneling processes for [DyKCa(COT) 3 (THF) 3 ] in contrast to [ErKCa(COT) 3 (THF) 3 ], in which the thermally activated and Raman processes appear to be relevant. Details of the electronic structures and magnetic properties of these complexes are further clarified with the help of DFT and ab initio theoretical calculations. 
    more » « less