Narrative sensemaking is a fundamental process to understand sequential information. Narrative maps are a visual representation framework that can aid analysts in this process. They allow analysts to understand the big picture of a narrative, uncover new relationships between events, and model connections between storylines. As a sensemaking tool, narrative maps have applications in intelligence analysis, misinformation modeling, and computational journalism. In this work, we seek to understand how analysts construct narrative maps in order to improve narrative map representation and extraction methods. We perform an experiment with a data set of news articles. Our main contribution is an analysis of how analysts construct narrative maps. The insights extracted from our study can be used to design narrative map visualizations, extraction algorithms, and visual analytics tools to support the sensemaking process.
more »
« less
Narrative Theory for Computational Narrative Understanding
Over the past decade, the field of natural language processing has developed a wide array of computational methods for reasoning about narrative, including summarization, commonsense inference, and event detection. While this work has brought an important empirical lens for examining narrative, it is by and large divorced from the large body of theoretical work on narrative within the humanities, social and cognitive sciences. In this position paper, we introduce the dominant theoretical frameworks to the NLP community, situate current research in NLP within distinct narratological traditions, and argue that linking computational work in NLP to theory opens up a range of new empirical questions that would both help advance our understanding of narrative and open up new practical applications.
more »
« less
- Award ID(s):
- 1942591
- PAR ID:
- 10342552
- Date Published:
- Journal Name:
- Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
- Page Range / eLocation ID:
- 298 to 311
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Integrating narrative elements into a game is a key element in de- signing an immersive experience. Narrative has been hypothesized to improve engagement, motivation, and learning within educational environments. While empirical results have been produced to show that narrative enhances engagement and motivation, its effects on learning were shown to either be insignificant or negative. We, there- fore, aim to address the question of how to integrate narrative in a game to improve learning. We address this through the design of May’s Journey, an educational game that teaches basic programming concepts where a story is integrated. The game design seamlessly integrates learning goals, core mechanic and narrative elements. In this paper, we discuss the game design as well as a study we con- ducted to compare two game versions, one with rich narrative and the other with light narrative. Results demonstrate that participants who interacted with the rich narrative version had fewer program- ming errors and increased engagement within the game. We present our contributions in the form of educational design principles for narrative integration supported by our study and results.more » « less
-
Clinical group bereavement therapy often promotes narrative sharing as a therapeutic intervention to facilitate grief processing. Increasingly, people turn to social media to express stories of loss and seek support surrounding bereavement experiences, specifically, the loss of loved ones from suicide. This paper reports the results of a computational linguistic analysis of narrative expression within an online suicide bereavement support community. We identify distinctive characteristics of narrative posts (compared to non-narrative posts) in linguistic style. We then develop and validate a machine-learning model for tagging narrative posts at scale and demonstrate the utility of applying this machine-learning model to a more general grief support community. Through comparison, we validate our model's narrative tagging accuracy and compare the proportion of narrative posts between the two communities we have analyzed. Narrative posts make up about half of all total posts in these two grief communities, demonstrating the importance of narrative posts to grief support online. Finally, we consider how the narrative tagging tool presented in this study can be applied to platform design to more effectively support people expressing the narrative sharing of grief in online grief support spaces.more » « less
-
Narrative data spans all disciplines and provides a coherent model of the world to the reader or viewer. Recent advancement in machine learning and Large Language Models (LLMs) have enable great strides in analyzing natural language. However, Large language models (LLMs) still struggle with complex narrative arcs as well as narratives containing conflicting information. Recent work indicates LLMs augmented with external knowledge bases can improve the accuracy and interpretability of the resulting models. In this work, we analyze the effectiveness of applying knowledge graphs (KGs) in understanding true-crime podcast data from both classical Natural Language Processing (NLP) and LLM approaches. We directly compare KG-augmented LLMs (KGLLMs) with classical methods for KG construction, topic modeling, and sentiment analysis. Additionally, the KGLLM allows us to query the knowledge base in natural language and test its ability to factually answer questions. We examine the robustness of the model to adversarial prompting in order to test the model's ability to deal with conflicting information. Finally, we apply classical methods to understand more subtle aspects of the text such as the use of hearsay and sentiment in narrative construction and propose future directions. Our results indicate that KGLLMs outperform LLMs on a variety of metrics, are more robust to adversarial prompts, and are more capable of summarizing the text into topics.more » « less
-
Narratives are fundamental to our understanding of the world, providing us with a natural structure for knowledge representation over time. Computational narrative extraction is a subfield of artificial intelligence that makes heavy use of information retrieval and natural language processing techniques. Despite the importance of computational narrative extraction, relatively little scholarly work exists on synthesizing previous research and strategizing future research in the area. In particular, this article focuses on extracting news narratives from an event-centric perspective. Extracting narratives from news data has multiple applications in understanding the evolving information landscape. This survey presents an extensive study of research in the area of event-based news narrative extraction. In particular, we screened more than 900 articles, which yielded 54 relevant articles. These articles are synthesized and organized by representation model, extraction criteria, and evaluation approaches. Based on the reviewed studies, we identify recent trends, open challenges, and potential research lines.more » « less
An official website of the United States government

