skip to main content


Title: Narrative Sensemaking: Strategies for Narrative Maps Construction
Narrative sensemaking is a fundamental process to understand sequential information. Narrative maps are a visual representation framework that can aid analysts in this process. They allow analysts to understand the big picture of a narrative, uncover new relationships between events, and model connections between storylines. As a sensemaking tool, narrative maps have applications in intelligence analysis, misinformation modeling, and computational journalism. In this work, we seek to understand how analysts construct narrative maps in order to improve narrative map representation and extraction methods. We perform an experiment with a data set of news articles. Our main contribution is an analysis of how analysts construct narrative maps. The insights extracted from our study can be used to design narrative map visualizations, extraction algorithms, and visual analytics tools to support the sensemaking process.  more » « less
Award ID(s):
2128642
NSF-PAR ID:
10334948
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Visualization Conference
Page Range / eLocation ID:
181 to 185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Narrative sensemaking is a fundamental process to understand sequential information. Narrative maps are a visual representation framework that can aid analysts in their narrative sensemaking process. Narrative maps allow analysts to understand the big picture of a narrative, uncover new relationships between events, and model the connection between storylines. We seek to understand how analysts create and use narrative maps in order to obtain design guidelines for an interactive visualization tool for narrative maps that can aid analysts in narrative sensemaking. We perform two experiments with a data set of news articles. The insights extracted from our studies can be used to design narrative maps, extraction algorithms, and visual analytics tools to support the narrative sensemaking process. The contributions of this paper are three-fold: (1) an analysis of how analysts construct narrative maps; (2) a user evaluation of specific narrative map features; and (3) design guidelines for narrative maps. Our findings suggest ways for designing narrative maps and extraction algorithms, as well as providing insights toward useful interactions. We discuss these insights and design guidelines and reflect on the potential challenges involved. As key highlights, we find that narrative maps should avoid redundant connections that can be inferred by using the transitive property of event connections, reducing the overall complexity of the map. Moreover, narrative maps should use multiple types of cognitive connections between events such as topical and causal connections, as this emulates the strategies that analysts use in the narrative sensemaking process. 
    more » « less
  2. Narratives are fundamental to our perception of the world and are pervasive in all activities that involve the representation of events in time. Yet, modern online information systems do not incorporate narratives in their representation of events occurring over time. This article aims to bridge this gap, combining the theory of narrative representations with the data from modern online systems. We make three key contributions: a theory-driven computational representation of narratives, a novel extraction algorithm to obtain these representations from data, and an evaluation of our approach. In particular, given the effectiveness of visual metaphors, we employ a route map metaphor to design a narrative map representation. The narrative map representation illustrates the events and stories in the narrative as a series of landmarks and routes on the map. Each element of our representation is backed by a corresponding element from formal narrative theory, thus providing a solid theoretical background to our method. Our approach extracts the underlying graph structure of the narrative map using a novel optimization technique focused on maximizing coherence while respecting structural and coverage constraints. We showcase the effectiveness of our approach by performing a user evaluation to assess the quality of the representation, metaphor, and visualization. Evaluation results indicate that the Narrative Map representation is a powerful method to communicate complex narratives to individuals. Our findings have implications for intelligence analysts, computational journalists, and misinformation researchers. 
    more » « less
  3. Recent research on conspiracy theories labels conspiracism as a distinct and deficient epistemic process. However, the tendency to pathologize conspiracism obscures the fact that it is a diverse and dynamic collective sensemaking process, transacted in public on the web. Here, we adopt a narrative framework to introduce a new analytical approach for examining online conspiracism. Narrative plays an important role because it is central to human cognition as well as being domain agnostic, and so can serve as a bridge between conspiracism and other modes of knowledge production. To illustrate the utility of our approach, we use it to analyze conspiracy theories identified in conversations across three different anti-vaccination discussion forums. Our approach enables us to capture more abstract categories without hiding the underlying diversity of the raw data. We find that there are dominant narrative themes across sites, but that there is also a tremendous amount of diversity within these themes. Our initial observations raise the possibility that different communities play different roles in the collective construction of conspiracy theories online. This offers one potential route for understanding not only cross-sectional differentiation, but the longitudinal dynamics of the narrative in future work. In particular, we are interested to examine how activity within the framework of the narrative shifts in response to news events and social media platforms’ nascent efforts to control different types of misinformation. Such analysis will help us to better understand how collectively constructed conspiracy narratives adapt in a shifting media ecosystem. 
    more » « less
  4. Abstract Narrative cartography is a discipline which studies the interwoven nature of stories and maps. However, conventional geovisualization techniques of narratives often encounter several prominent challenges, including the data acquisition & integration challenge and the semantic challenge. To tackle these challenges, in this paper, we propose the idea of narrative cartography with knowledge graphs (KGs). Firstly, to tackle the data acquisition & integration challenge, we develop a set of KG-based GeoEnrichment toolboxes to allow users to search and retrieve relevant data from integrated cross-domain knowledge graphs for narrative mapping from within a GISystem. With the help of this tool, the retrieved data from KGs are directly materialized in a GIS format which is ready for spatial analysis and mapping. Two use cases — Magellan’s expedition and World War II — are presented to show the effectiveness of this approach. In the meantime, several limitations are identified from this approach, such as data incompleteness, semantic incompatibility, and the semantic challenge in geovisualization. For the later two limitations, we propose a modular ontology for narrative cartography, which formalizes both the map content ( Map Content Module) and the geovisualization process ( Cartography Module). We demonstrate that, by representing both the map content and the geovisualization process in KGs (an ontology), we can realize both data reusability and map reproducibility for narrative cartography. 
    more » « less
  5. This paper details the process of developing and adapting a narrative framework for teaching an introductory geotechnical engineering course (EGR 340) through a systematic iterative procedure that embeds conceptual learning into a story format and, over time, elaborates elements and interactions within the story using methods of transmedia storytelling. Although the tools are presented within the context of geotechnical engineering, the approach can be applied throughout engineering education. The elaborative transmedia storytelling process we describe is based on the Imaginative Education (IE) teaching approach. Well-grounded in the learning sciences--but novel in engineering education--IE facilitates student engagement through the use of cognitive tools (such as extremes of reality, heroism, and the exploration of binaries). These tools are connected to types of understanding and serve to enhance a sense of mystery and wonder for topics that might not otherwise register as being immediately relevant to students. A significant benefit of this approach is that that it lends itself to modification and personalization through the inclusion of new features and methods of interaction at the level of the whole story and at the level of story elements. Four types of understanding and their associated cognitive tools were used in EGR 340 and their application is described in this paper. They include: • Mythic understanding using a fantasy narrative that played on the idea that geotechnical engineers refer to their field as the “dark arts of engineering.” • Romantic understanding using heroic narratives that helped students put themselves in the place of Terzaghi and Casagrande as they developed the field. Extremes of reality was another Romantic tool used throughout the course. For example, students learned about soil stress by first solving the mystery of how quicksand works. • Theoretic understanding using concept maps and narrative was used at both the course and unit level to organize concepts. • Ironic understanding using discussion of the inadequacies of theoretic understanding to recognize the reference to “dark arts.” Transmedia storytelling through extensive use of short video clips and other means was used to enhance the application of these tools. For example, students traveled virtually to Venice where they joined a noisy gondola tour to examine building foundations and learn about how poor water policies impacted the sinking of the city. Course evaluation and lesson assessment data were collected in 2018, 2020, and 2022, with each year being associated with a different version of the course. Using these data, we present a mixed-methods analysis of learning outcomes that provides evidence for the effectiveness of this approach at different steps along the way. Non-parametric comparisons of student assessment data demonstrated that student conceptual learning was relatively stable across measures and versions, but that students in the fully transmedia iteration generally performed more strongly on assessments of project-based learning (Borrow/Fill; Atterberg; Dam). Thematic analysis of student responses to open-ended course evaluation prompts demonstrates that engagement was high across all versions of the course, and that students in the 2022 version discussed engineering topics in a manner that included personal connections and reflections. 
    more » « less