skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electrohydrodynamics of deflated vesicles: budding, rheology and pairwise interactions
We develop a new boundary integral method for solving the coupled electro- and hydrodynamics of vesicle suspensions in Stokes flow. This relies on a well-conditioned boundary integral equation formulation for the leaky-dielectric model describing the electric response of the vesicles and an efficient numerical solver capable of handling highly deflated vesicles. Our method is applied to explore vesicle electrohydrodynamics in three cases. First, we study the classical prolate–oblate–prolate transition dynamics observed upon application of a uniform DC electric field. We discover that, in contrast to the squaring previously found with nearly spherical vesicles, highly deflated vesicles tend to form buds. Second, we illustrate the capabilities of the method by quantifying the electrorheology of a dilute vesicle suspension. Finally, we investigate the pairwise interactions of vesicles and find three different responses when the key parameters are varied: (i) chain formation, where they self-assemble to form a chain that is aligned along the field direction; (ii) circulatory motion, where they rotate about each other; (iii) oscillatory motion, where they form a chain but oscillate about each other. The last two are unique to vesicles and are not observed in the case of other soft particle suspensions such as drops.  more » « less
Award ID(s):
1418964 1454010
PAR ID:
10342562
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
867
ISSN:
0022-1120
Page Range / eLocation ID:
334 to 347
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A model is constructed to describe the flow field and arbitrary deformation of a drop or vesicle that contains and is embedded in an electrolyte solution, where the flow and deformation are caused by an applied electric field. The applied field produces an electrokinetic flow, which is set up on the charge-up time scale $$\tau _{*c}=\lambda _{*} a_{*}/D_{*}$$ , where $$\lambda _{*}$$ is the Debye screening length, $$a_{*}$$ is the inclusion length scale and $$D_{*}$$ is an ion diffusion constant. The model is based on the Poisson–Nernst–Planck and Stokes equations. These are reduced or simplified by forming the limit of strong electrolytes, for which dissolved salts are completely ionised in solution, together with the limit of thin Debye layers. Debye layers of opposite polarity form on either side of the drop interface or vesicle membrane, together forming an electrical double layer. Two formulations of the model are given. One utilises an integral equation for the velocity field on the interface or membrane surface together with a pair of integral equations for the electrostatic potential on the outer faces of the double layer. The other utilises a form of the stress-balance boundary condition that incorporates the double layer structure into relations between the dependent variables on the layers’ outer faces. This constitutes an interfacial boundary condition that drives an otherwise unforced Stokes flow outside the double layer. For both formulations relations derived from the transport of ions in each Debye layer give additional boundary conditions for the potential and ion concentrations outside the double layer. 
    more » « less
  2. The vesicles of short chain amphiphiles have been demonstrated to grow and divide. Here, we explored whether vesicle populations show evidence of heritability. We prepared 1:1 decanoic acid:decylamine vesicles with or without a detergent and in either water or prebiotic soup, a mixture of compounds that might have been present on early Earth. The mixtures were subjected to transfer with dilution, where, after 24 h of incubation (one generation), we transferred 10% of the mix into a 90% volume of a fresh vesicle-containing solution. This was continued for 30 generations. Samples with a history of transfers were compared to no-transfer controls (NTCs), initiated each generation using the same solutions but without 10% of the prior generation. We compared the vesicle size distribution and chemical composition of the transfer samples and NTCs and compared their fluorescence signals in the presence of Nile Red dye. We observe changes in the vesicle size but did not detect differences in the chemical composition. In the samples with detergent and soup, we observed irregular changes in the Nile Red fluorescence, with a tendency for parent and offspring samples to have correlated values, suggestive of heritability. This last result, combined with evidence of temporal autocorrelation across generations, suggests the possibility that vesicles could respond to selection. 
    more » « less
  3. null (Ed.)
    The functions of colloids, such as membranes and vesicles, are dictated by interfacial properties which are determined by an interplay of physical interactions and processes spanning multiple spatiotemporal scales. The multiscale characteristics of membranes and vesicles can be resolved by the hybrid molecular dynamics-lattice Boltzmann technique. This technique enables the resolution of particle dynamics along with long range electrostatic and hydrodynamic interactions. We have examined the feasibility of an implementation of the hybrid technique in conjunction with a Martini-based implicit solvent coarse-grained force field to capture the molecular and interfacial characteristics of membranes and vesicles. For simplicity, we have examined two types of vesicles whose molecular components have different sustained interactions with the solvent. One of the vesicles encompassed phospholipids and the other vesicle was composed of phospholipids and poly ethylene glycol (PEG)-grafted lipids. The molecular and interfacial characteristics of the phospholipid vesicle and PEGylated, or hairy, vesicles are found to be in good agreement with earlier experimental, computational and theoretical findings. These results demonstrate that the multiscale hybrid technique used with a Martini-based implicit solvent coarse-grained model is suitable for capturing the molecular and interfacial characteristics of membranes and vesicles. Furthermore, other implicit solvent coarse-grained models can be used in conjunction with the hybrid molecular dynamics-lattice Boltzmann technique to examine the molecular and interfacial characteristics of membranes and vesicles. Our study demonstrates the potential of the hybrid technique in capturing multiscale interfacial characteristics of intra- and inter-colloid interactions in suspensions under different flow conditions, and their relation to molecular properties. In addition, this technique can be applied to design colloids with multiscale characteristics which yield desired interactions with other colloids and responses to external stimuli. 
    more » « less
  4. An isolated charge-neutral droplet in a uniform electric field experiences no net force. However, a droplet pair can move in response to field-induced dipolar and hydrodynamic interactions. If the droplets are identical, the centre of mass of the pair remains fixed. Here, we show that if the droplets have different properties, the pair experiences a net motion due to non-reciprocal electrohydrodynamic interactions. We analyse the three-dimensional droplet trajectories using asymptotic theory, assuming spherical droplets and large separations, and numerical simulations based on a boundary integral method. The dynamics can be quite intricate depending on the initial orientation of the droplets line-of-centres relative to the applied field direction. Drops tend to migrate towards a configuration with line-of-centres either parallel or perpendicular to the applied field direction, while either coming into contact or indefinitely separating. We elucidate the conditions under which these different interaction scenarios take place. Intriguingly, we find that in some cases droplets can form a pair (tandem) that translates either parallel or perpendicular to the applied field direction. 
    more » « less
  5. We observe the formation of highly controllable and responsive onion-like vesicles by using rigid sphere−rod amphiphilic hybrid macromolecules, composed of charged, hydrophilic Keggintype clusters (spheres) and hydrophobic rod-like oligofluorenes (OFs). Unlike the commonly used approach, which mainly relies on chain bending of flexible molecules to satisfy different curvatures in onion-like vesicles, the rigid hybrids form flexible interdigitations by tuning the angles between OFs, leading to the formation of bilayers with different sizes. The self-assembled vesicles possess complete onion-like structures from most inner to outer layers, and their size (layer number) can be accurately manipulated by different solution conditions including solvent polarity, ionic strength, temperature, and hybrid concentration, with fixed interbilayer distance under all conditions. Moreover, the vesicle size (layer number) shows excellent reversibility to the change of temperature. The charged feature of spheres, rod length, and overall hybrid architecture shows significant effects on the formation of such onion-like vesicles. 
    more » « less