Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Many biological microswimmers locomote by periodically beating the densely packed cilia on their cell surface in a wave-like fashion. While the swimming mechanisms of ciliated microswimmers have been extensively studied both from the analytical and the numerical point of view, optimisation of the ciliary motion of microswimmers has received limited attention, especially for non-spherical shapes. In this paper, using an envelope model for the microswimmer, we numerically optimise the ciliary motion of a ciliate with an arbitrary axisymmetric shape. Forward solutions are found using a fast boundary-integral method, and the efficiency sensitivities are derived using an adjoint-based method. Our results show that a prolate microswimmer with a $$2\,{:}\,1$$ aspect ratio shares similar optimal ciliary motion as the spherical microswimmer, yet the swimming efficiency can increase two-fold. More interestingly, the optimal ciliary motion of a concave microswimmer can be qualitatively different from that of the spherical microswimmer, and adding a constraint to the cilia length is found to improve, on average, the efficiency for such swimmers.more » « less
-
This article presents a computational approach for determining the optimal slip velocities on any given shape of an axisymmetric micro-swimmer suspended in a viscous fluid. The objective is to minimize the power loss to maintain a target swimming speed, or equivalently to maximize the efficiency of the micro-swimmer. Owing to the linearity of the Stokes equations governing the fluid motion, we show that this PDE-constrained optimization problem reduces to a simpler quadratic optimization problem, whose solution is found using a high-order accurate boundary integral method. We consider various families of shapes parameterized by the reduced volume and compute their swimming efficiency. Among those, prolate spheroids were found to be the most efficient micro-swimmer shapes for a given reduced volume. We propose a simple shape-based scalar metric that can determine whether the optimal slip on a given shape makes it a pusher, a puller or a neutral swimmer.more » « less
-
We develop a new boundary integral method for solving the coupled electro- and hydrodynamics of vesicle suspensions in Stokes flow. This relies on a well-conditioned boundary integral equation formulation for the leaky-dielectric model describing the electric response of the vesicles and an efficient numerical solver capable of handling highly deflated vesicles. Our method is applied to explore vesicle electrohydrodynamics in three cases. First, we study the classical prolate–oblate–prolate transition dynamics observed upon application of a uniform DC electric field. We discover that, in contrast to the squaring previously found with nearly spherical vesicles, highly deflated vesicles tend to form buds. Second, we illustrate the capabilities of the method by quantifying the electrorheology of a dilute vesicle suspension. Finally, we investigate the pairwise interactions of vesicles and find three different responses when the key parameters are varied: (i) chain formation, where they self-assemble to form a chain that is aligned along the field direction; (ii) circulatory motion, where they rotate about each other; (iii) oscillatory motion, where they form a chain but oscillate about each other. The last two are unique to vesicles and are not observed in the case of other soft particle suspensions such as drops.more » « less
An official website of the United States government
