skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Emerging Optical Interconnects for AI Systems
The ever-growing demand for accurate machine learning models resulted in an increase in dataset and model sizes of deep neural networks. This paper discusses reconfigurable optical networks as the key enabler for scaling AI systems.  more » « less
Award ID(s):
2023468
PAR ID:
10342566
Author(s) / Creator(s):
Date Published:
Journal Name:
OFC
Page Range / eLocation ID:
Th1G.1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Quantifying the structure and dynamics of species interactions in ecological communities is fundamental to studying ecology and evolution. While there are numerous approaches to analysing ecological networks, there is not yet an approach that can (1) quantify dissimilarity in the global structure of ecological networks that range from identical species and interaction composition to zero shared species or interactions and (2) map species between such networks while incorporating additional ecological information, such as species traits or abundances.To address these challenges, we introduce the use of optimal transport distances to quantify ecological network dissimilarity and functionally equivalent species between networks. Specifically, we describe the Gromov–Wasserstein (GW) and Fused Gromov–Wasserstein (FGW) distances. We apply these optimal transport methods to synthetic and empirical data, using mammal food webs throughout sub‐Saharan Africa for illustration. We showcase the application of GW and FGW distances to identify the most functionally similar species between food webs, incorporate additional trait information into network comparisons and quantify food web dissimilarity among geographic regions.Our results demonstrate that GW and FGW distances can effectively differentiate ecological networks based on their topological structure while identifying functionally equivalent species, even when networks have different species. The FGW distance further improves node mapping for basal species by incorporating node‐level traits. We show that these methods allow for a more nuanced understanding of the topological similarities in food web networks among geographic regions compared to an alternative measure of network dissimilarity based on species identities.Optimal transport distances offer a new approach for quantifying functional equivalence between networks and a measure of network dissimilarity suitable for a broader range of uses than existing approaches. OT methods can be harnessed to analyse ecological networks at large spatial scales and compare networks among ecosystems, realms or taxa. Optimal transport‐based distances, therefore, provide a powerful tool for analysing ecological networks with great potential to advance our understanding of ecological community structure and dynamics in a changing world. 
    more » « less
  2. Abstract Manga, Japanese comics, has been popular on a global scale. Social networks among characters, which are often called character networks, may be a significant contributor to their popularity. We collected data from 162 popular manga that span over 70 years and analyzed their character networks. First, we found that many of static and temporal properties of the character networks are similar to those of real human social networks. Second, the character networks of most manga are protagonist-centered such that a single protagonist interacts with the majority of other characters. Third, the character networks for manga mainly targeting boys have shifted to denser and less protagonist-centered networks and with fewer characters over decades. Manga mainly targeting girls showed the opposite trend except for the downward trend in the number of characters. The present study, which relies on manga data sampled on an unprecedented scale, paves the way for further population studies of character networks and other aspects of comics. 
    more » « less
  3. The population structure often impacts evolutionary dynamics. In constant-selection evolutionary dynamics between two types, amplifiers of selection are networks that promote the fitter mutant to take over the entire population, and suppressors of selection do the opposite. It has been shown that most undirected and unweighted networks are amplifiers of selection under a common updating rule and initial condition. Here, we extensively investigate how edge weights influence selection on undirected networks. We show that random edge weights make small networks less amplifying than the corresponding unweighted networks in a majority of cases and also make them suppressors of selection (i.e. less amplifying than the complete graph, or equivalently, the Moran process) in many cases. Qualitatively, the same result holds true for larger empirical networks. These results suggest that amplifiers of selection are not as common for weighted networks as for unweighted counterparts. 
    more » « less
  4. Abstract Population structure has been known to substantially affect evolutionary dynamics. Networks that promote the spreading of fitter mutants are called amplifiers of selection, and those that suppress the spreading of fitter mutants are called suppressors of selection. Research in the past two decades has found various families of amplifiers while suppressors still remain somewhat elusive. It has also been discovered that most networks are amplifiers of selection under the birth-death updating combined with uniform initialization, which is a standard condition assumed widely in the literature. In the present study, we extend the birth-death processes to temporal (i.e., time-varying) networks. For the sake of tractability, we restrict ourselves to switching temporal networks, in which the network structure deterministically alternates between two static networks at constant time intervals or stochastically in a Markovian manner. We show that, in a majority of cases, switching networks are less amplifying than both of the two static networks constituting the switching networks. Furthermore, most small switching networks, i.e., networks on six nodes or less, are suppressors, which contrasts to the case of static networks. 
    more » « less
  5. Abstract Despite increasing interest in the dynamics of functional brain networks, most studies focus on the changing relationships over time between spatially static networks or regions. Here we propose an approach to study dynamic spatial brain networks in human resting state functional magnetic resonance imaging (rsfMRI) data and evaluate the temporal changes in the volumes of these 4D networks. Our results show significant volumetric coupling (i.e., synchronized shrinkage and growth) between networks during the scan, that we refer to as dynamic spatial network connectivity (dSNC). We find that several features of such dynamic spatial brain networks are associated with cognition, with higher dynamic variability in these networks and higher volumetric coupling between network pairs positively associated with cognitive performance. We show that these networks are modulated differently in individuals with schizophrenia versus typical controls, resulting in network growth or shrinkage, as well as altered focus of activity within a network. Schizophrenia also shows lower spatial dynamical variability in several networks, and lower volumetric coupling between pairs of networks, thus upholding the role of dynamic spatial brain networks in cognitive impairment seen in schizophrenia. Our data show evidence for the importance of studying the typically overlooked voxel‐wise changes within and between brain networks. 
    more » « less