ABSTRACT Spontaneous neural activity coherently relays information across the brain. Several efforts have been made to understand how spontaneous neural activity evolves at the macro‐scale level as measured by resting‐state functional magnetic resonance imaging (rsfMRI). Previous studies observe the global patterns and flow of information in rsfMRI using methods such as sliding window or temporal lags. However, to our knowledge, no studies have examined spatial propagation patterns evolving with time across multiple overlapping 4D networks. Here, we propose a novel approach to study how dynamic states of the brain networks spatially propagate and evaluate whether these propagating states contain information relevant to mental illness. We implement a lagged windowed correlation approach to capture voxel‐wise network‐specific spatial propagation patterns in dynamic states. Results show systematic spatial state changes over time, which we confirmed are replicable across multiple scan sessions using human connectome project data. We observe networks varying in propagation speed; for example, the default mode network (DMN) propagates slowly and remains positively correlated with blood oxygenation level‐dependent (BOLD) signal for 6–8 s, whereas the visual network propagates much quicker. We also show that summaries of network‐specific propagative patterns are linked to schizophrenia. More specifically, we find significant group differences in multiple dynamic parameters between patients with schizophrenia and controls within four large‐scale networks: default mode, temporal lobe, subcortical, and visual network. Individuals with schizophrenia spend more time in certain propagating states. In summary, this study introduces a promising general approach to exploring the spatial propagation in dynamic states of brain networks and their associated complexity and reveals novel insights into the neurobiology of schizophrenia.
more »
« less
4D dynamic spatial brain networks at rest linked to cognition show atypical variability and coupling in schizophrenia
Abstract Despite increasing interest in the dynamics of functional brain networks, most studies focus on the changing relationships over time between spatially static networks or regions. Here we propose an approach to study dynamic spatial brain networks in human resting state functional magnetic resonance imaging (rsfMRI) data and evaluate the temporal changes in the volumes of these 4D networks. Our results show significant volumetric coupling (i.e., synchronized shrinkage and growth) between networks during the scan, that we refer to as dynamic spatial network connectivity (dSNC). We find that several features of such dynamic spatial brain networks are associated with cognition, with higher dynamic variability in these networks and higher volumetric coupling between network pairs positively associated with cognitive performance. We show that these networks are modulated differently in individuals with schizophrenia versus typical controls, resulting in network growth or shrinkage, as well as altered focus of activity within a network. Schizophrenia also shows lower spatial dynamical variability in several networks, and lower volumetric coupling between pairs of networks, thus upholding the role of dynamic spatial brain networks in cognitive impairment seen in schizophrenia. Our data show evidence for the importance of studying the typically overlooked voxel‐wise changes within and between brain networks.
more »
« less
- Award ID(s):
- 2112455
- PAR ID:
- 10526316
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Human Brain Mapping
- Volume:
- 45
- Issue:
- 11
- ISSN:
- 1065-9471
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Schizophrenia is a severe brain disorder with serious symptoms including delusions, disorganized speech, and hallucinations that can have a long-term detrimental impact on different aspects of a patient's life. It is still unclear what the main cause of schizophrenia is, but a combination of altered brain connectivity and structure may play a role. Neuroimaging data has been useful in characterizing schizophrenia, but there has been very little work focused on voxel-wise changes in multiple brain networks over time, despite evidence that functional networks exhibit complex spatiotemporal changes over time within individual subjects. Recent studies have primarily focused on static (average) features of functional data or on temporal variations between fixed networks; however, such approaches are not able to capture multiple overlapping networks which change at the voxel level. In this work, we employ a deep residual convolutional neural network (CNN) model to extract 53 different spatiotemporal networks each of which captures dynamism within various domains including subcortical, cerebellar, visual, sensori-motor, auditory, cognitive control, and default mode. We apply this approach to study spatiotemporal brain dynamism at the voxel level within multiple functional networks extracted from a large functional magnetic resonance imaging (fMRI) dataset of individuals with schizophrenia (N= 708) and controls (N= 510). Our analysis reveals widespread group level differences across multiple networks and spatiotemporal features including voxel-wise variability, magnitude, and temporal functional network connectivity in widespread regions expected to be impacted by the disorder. We compare with typical average spatial amplitude and show highly structured and neuroanatomically relevant results are missed if one does not consider the voxel-wise spatial dynamics. Importantly, our approach can summarize static, temporal dynamic, spatial dynamic, and spatiotemporal dynamics features, thus proving a powerful approach to unify and compare these various perspectives. In sum, we show the proposed approach highlights the importance of accounting for both temporal and spatial dynamism in whole brain neuroimaging data generally, shows a high-level of sensitivity to schizophrenia highlighting global but spatially unique dynamics showing group differences, and may be especially important in studies focused on the development of brain-based biomarkers.more » « less
-
Abstract In neuroimaging research, understanding the intricate dynamics of brain networks over time is paramount for unraveling the complexities of brain function. One approach commonly used to explore the dynamic nature of brain networks is functional connectivity analysis. However, while functional connectivity offers valuable insights, it fails to consider the diverse timescales of coupling between different brain regions. This gap in understanding leaves a significant aspect of brain dynamics unexplored in neuroimaging research. We propose an innovative approach that delves into the dynamic coupling/connectivity timescales of brain regions relative to one another, focusing on how brain region couplings stretch or shrink over time, rather than relying solely on functional connectivity measures. Our method introduces a novel metric called “warping elasticity,” which utilizes dynamic time warping (DTW) to capture the temporal nuances of connectivity. Unlike traditional methods, our approach allows for (potentially nonlinear) dynamic compression and expansion of the time series, offering a more intricate understanding of how coupling between brain regions evolves. Through the adaptive windows employed by the DTW method, we can effectively capture transient couplings within varying connectivity timescales of brain network pairs. In extensive evaluations, our method exhibits high replicability across subjects and diverse datasets, showcasing robustness against noise. More importantly, it uncovers statistically significant distinctions between healthy control (HC) and schizophrenia (SZ) groups through the identification of warp elasticity states. These states are cluster centroids, representing the warp elasticity across subjects and time, offering a novel perspective on the dynamic nature of brain connectivity, distinct from conventional metrics focused solely on functional connectivity. For instance, controls spend more time in a warp elasticity state characterized by timescale stretching of the visual domain relative to other domains, suggesting disruptions in the visual cortex. Conversely, patients show increased time spent in a warp elasticity state with stretching timescales in higher cognitive areas relative to sensory regions, indicative of prolonged cognitive processing of sensory input. Overall, our approach presents a promising avenue for investigating the temporal dynamics of brain network interactions in functional magnetic resonance imaging (fMRI) data. By focusing on the elasticity of connectivity timescales, rather than adhering to functional connectivity metrics, we pave the way for a deeper understanding of neuropsychiatric disorders in neuroscience research.more » « less
-
Background Schizophrenia is a brain disorder characterized by diffuse, diverse, and wide-spread changes in gray matter volume (GM) and white matter structure (fractional anisotropy, FA), as well as cognitive impairments that greatly impact an individual’s quality of life. While the relationship of each of these image modalities and their links to schizophrenia status and cognitive impairment has been investigated separately, a multimodal fusion via parallel independent component analysis (pICA) affords the opportunity to explore the relationships between the changes in GM and FA, and the implications these network changes have on cognitive performance. Methods Images from 73 subjects with schizophrenia (SZ) and 82 healthy controls (HC) were drawn from an existing dataset. We investigated 12 components from each feature (FA and GM). Loading coefficients from the images were used to identify pairs of features that were significantly correlated and showed significant group differences between HC and SZ. MANCOVA analysis uncovered the relationships the identified spatial maps had with age, gender, and a global cognitive performance score. Results Three component pairs showed significant group differences (HC > SZ) in both gray and white matter measurements. Two of the component pairs identified networks of gray matter that drove significant relationships with cognition (HC > SZ) after accounting for age and gender. The gray and white matter structural networks identified in these three component pairs pull broadly from many regions, including the right and left thalamus, lateral occipital cortex, multiple regions of the middle temporal gyrus, precuneus cortex, postcentral gyrus, cingulate gyrus/cingulum, lingual gyrus, and brain stem. Conclusion The results of this multimodal analysis adds to our understanding of how the relationship between GM, FA, and cognition differs between HC and SZ by highlighting the correlated intermodal covariance of these structural networks and their differential relationships with cognitive performance. Previous unimodal research has found similar areas of GM and FA differences between these groups, and the cognitive deficits associated with SZ have been well documented. This study allowed us to evaluate the intercorrelated covariance of these structural networks and how these networks are involved the differences in cognitive performance between HC and SZ.more » « less
-
Abstract Graph-theoretical methods have been widely used to study human brain networks in psychiatric disorders. However, the focus has primarily been on global graphic metrics with little attention to the information contained in paths connecting brain regions. Details of disruption of these paths may be highly informative for understanding disease mechanisms. To detect the absence or addition of multistep paths in the patient group, we provide an algorithm estimating edges that contribute to these paths with reference to the control group. We next examine where pairs of nodes were connected through paths in both groups by using a covariance decomposition method. We apply our method to study resting-state fMRI data in schizophrenia versus controls. Results show several disconnectors in schizophrenia within and between functional domains, particularly within the default mode and cognitive control networks. Additionally, we identify new edges generating additional paths. Moreover, although paths exist in both groups, these paths take unique trajectories and have a significant contribution to the decomposition. The proposed path analysis provides a way to characterize individuals by evaluating changes in paths, rather than just focusing on the pairwise relationships. Our results show promise for identifying path-based metrics in neuroimaging data.more » « less