skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games
We present a progressive approximation algorithm for the exact solution of several classes of interdiction games in which two noncooperative players (namely an attacker and a follower) interact sequentially. The follower must solve an optimization problem that has been previously perturbed by means of a series of attacking actions led by the attacker. These attacking actions aim at augmenting the cost of the decision variables of the follower’s optimization problem. The objective, from the attacker’s viewpoint, is that of choosing an attacking strategy that reduces as much as possible the quality of the optimal solution attainable by the follower. The progressive approximation mechanism consists of the iterative solution of an interdiction problem in which the attacker actions are restricted to a subset of the whole solution space and a pricing subproblem invoked with the objective of proving the optimality of the attacking strategy. This scheme is especially useful when the optimal solutions to the follower’s subproblem intersect with the decision space of the attacker only in a small number of decision variables. In such cases, the progressive approximation method can solve interdiction games otherwise intractable for classical methods. We illustrate the efficiency of our approach on the shortest path, 0-1 knapsack and facility location interdiction games. Summary of Contribution: In this article, we present a progressive approximation algorithm for the exact solution of several classes of interdiction games in which two noncooperative players (namely an attacker and a follower) interact sequentially. We exploit the discrete nature of this interdiction game to design an effective algorithmic framework that improves the performance of general-purpose solvers. Our algorithm combines elements from mathematical programming and computer science, including a metaheuristic algorithm, a binary search procedure, a cutting-planes algorithm, and supervalid inequalities. Although we illustrate our results on three specific problems (shortest path, 0-1 knapsack, and facility location), our algorithmic framework can be extended to a broader class of interdiction problems.  more » « less
Award ID(s):
2039917
PAR ID:
10342622
Author(s) / Creator(s):
;
Date Published:
Journal Name:
INFORMS Journal on Computing
Volume:
34
Issue:
2
ISSN:
1091-9856
Page Range / eLocation ID:
890 to 908
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Traditionally, in the bilevel optimization framework, a leader chooses her actions by solving an upper-level problem, assuming that a follower chooses an optimal reaction by solving a lower-level problem. However, in many settings, the lower-level problems might be nontrivial, thus requiring the use of tailored algorithms for their solution. More importantly, in practice, such problems might be inexactly solved by heuristics and approximation algorithms. Motivated by this consideration, we study a broad class of bilevel optimization problems where the follower might not optimally react to the leader’s actions. In particular, we present a modeling framework in which the leader considers that the follower might use one of a number of known algorithms to solve the lower-level problem, either approximately or heuristically. Thus, the leader can hedge against the follower’s use of suboptimal solutions. We provide algorithmic implementations of the framework for a class of nonlinear bilevel knapsack problem (BKP), and we illustrate the potential impact of incorporating this realistic feature through numerical experiments in the context of defender-attacker problems. 
    more » « less
  2. Abstract In this paper, we study distributionally risk-receptive and distributionally robust (or risk-averse) multistage stochastic mixed-integer programs (denoted by DRR- and DRO-MSIPs). We present cutting plane-based and reformulation-based approaches for solving DRR- and DRO-MSIPs without and with decision-dependent uncertainty to optimality. We show that these approaches are finitely convergent with probability one. Furthermore, we introduce generalizations of DRR- and DRO-MSIPs by presenting multistage stochastic disjunctive programs and algorithms for solving them. These frameworks are useful for optimization problems under uncertainty where the focus is on analyzing outcomes based on multiple decision-makers’ differing perspectives, such as interdiction problems that are attacker-defender games having non-cooperative players. To assess the performance of the algorithms for DRR- and DRO-MSIPs, we consider instances of distributionally ambiguous multistage maximum flow and facility location interdiction problems that are important in their own right. Based on our computational results, we observe that the cutting plane-based approaches are 2800% and 2410% (on average) faster than the reformulation-based approaches for the foregoing instances with distributional risk-aversion and risk-receptiveness, respectively. Additionally, we conducted out-of-sample tests to showcase the significance of the DRR framework in revealing network vulnerabilities and also in mitigating the impact of data corruption. 
    more » « less
  3. Mixed strategies are often evaluated based on the expected payoff that they guarantee. This is not always desirable. In this paper, we consider games for which maximizing the expected payoff deviates from the actual goal of the players. To address this issue, we introduce the notion of a (u,p)-maxmin strategy which ensures receiving a minimum utility of u with probability at least p. We then give approximation algorithms for the problem of finding a (u, p)-maxmin strategy for these games. The first game that we consider is Colonel Blotto, a well-studied game that was introduced in 1921. In the Colonel Blotto game, two colonels divide their troops among a set of battlefields. Each battlefield is won by the colonel that puts more troops in it. The payoff of each colonel is the weighted number of battlefields that she wins. We show that maximizing the expected payoff of a player does not necessarily maximize her winning probability for certain applications of Colonel Blotto. For example, in presidential elections, the players’ goal is to maximize the probability of winning more than half of the votes, rather than maximizing the expected number of votes that they get. We give an exact algorithm for a natural variant of continuous version of this game. More generally, we provide constant and logarithmic approximation algorithms for finding (u, p)-maxmin strategies. We also introduce a security game version of Colonel Blotto which we call auditing game. It is played between two players, a defender and an attacker. The goal of the defender is to prevent the attacker from changing the outcome of an instance of Colonel Blotto. Again, maximizing the expected payoff of the defender is not necessarily optimal. Therefore we give a constant approximation for (u, p)-maxmin strategies. 
    more » « less
  4. Markov games model interactions among multiple players in a stochastic, dynamic environment. Each player in a Markov game maximizes its expected total discounted reward, which depends upon the policies of the other players. We formulate a class of Markov games, termed affine Markov games, where an affine reward function couples the players’ actions. We introduce a novel solution concept, the soft-Bellman equilibrium, where each player is boundedly rational and chooses a soft-Bellman policy rather than a purely rational policy as in the well-known Nash equilibrium concept. We provide conditions for the existence and uniqueness of the soft-Bellman equilibrium and propose a nonlinear least-squares algorithm to compute such an equilibrium in the forward problem. We then solve the inverse game problem of inferring the players’ reward parameters from observed state-action trajectories via a projected-gradient algorithm. Experiments in a predator-prey OpenAI Gym environment show that the reward parameters inferred by the proposed algorithm outper- form those inferred by a baseline algorithm: they reduce the Kullback-Leibler divergence between the equilibrium policies and observed policies by at least two orders of magnitude. 
    more » « less
  5. Network games are commonly used to capture the strategic interactions among interconnected agents in simultaneous moves. The agents’ actions in a Nash equilibrium must take into account the mutual dependencies connecting them, which is typically obtained by solving a set of fixed point equations. Stackelberg games, on the other hand, model the sequential moves between agents that are categorized as leaders and followers. The corresponding solution concept, the subgame perfect equilibrium, is typically obtained using backward induction. Both game forms enjoy very wide use in the (cyber)security literature, the network game often as a template to study security investment and externality – also referred to as the Interdependent Security (IDS) games – and the Stackelberg game as a formalism to model a variety of attacker-defender scenarios. In this study we examine a model that combines both types of strategic reasoning: the interdependency as well as sequential moves. Specifically, we consider a scenario with a network of interconnected first movers (firms or defenders, whose security efforts and practices collectively determine the security posture of the eco-system) and one or more second movers, the attacker(s), who determine how much effort to exert on attacking the many potential targets. This gives rise to an equilibrium concept that embodies both types of equilibria mentioned above. We will examine how its existence and uniqueness conditions differ from that for a standard network game. Of particular interest are comparisons between the two game forms in terms of effort exerted by the defender(s) and the attacker(s), respectively, and the free-riding behavior among the defenders. 
    more » « less