skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: From Battlefields to Elections: Winning Strategies of Blotto and Auditing Games
Mixed strategies are often evaluated based on the expected payoff that they guarantee. This is not always desirable. In this paper, we consider games for which maximizing the expected payoff deviates from the actual goal of the players. To address this issue, we introduce the notion of a (u,p)-maxmin strategy which ensures receiving a minimum utility of u with probability at least p. We then give approximation algorithms for the problem of finding a (u, p)-maxmin strategy for these games. The first game that we consider is Colonel Blotto, a well-studied game that was introduced in 1921. In the Colonel Blotto game, two colonels divide their troops among a set of battlefields. Each battlefield is won by the colonel that puts more troops in it. The payoff of each colonel is the weighted number of battlefields that she wins. We show that maximizing the expected payoff of a player does not necessarily maximize her winning probability for certain applications of Colonel Blotto. For example, in presidential elections, the players’ goal is to maximize the probability of winning more than half of the votes, rather than maximizing the expected number of votes that they get. We give an exact algorithm for a natural variant of continuous version of this game. More generally, we provide constant and logarithmic approximation algorithms for finding (u, p)-maxmin strategies. We also introduce a security game version of Colonel Blotto which we call auditing game. It is played between two players, a defender and an attacker. The goal of the defender is to prevent the attacker from changing the outcome of an instance of Colonel Blotto. Again, maximizing the expected payoff of the defender is not necessarily optimal. Therefore we give a constant approximation for (u, p)-maxmin strategies.  more » « less
Award ID(s):
1331175
PAR ID:
10057357
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2018)
ISSN:
2160-1445
Page Range / eLocation ID:
2291-2310
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study zero-sum differential games with state constraints and one-sided information, where the informed player (Player 1) has a categorical payoff type unknown to the uninformed player (Player 2). The goal of Player 1 is to minimize his payoff without violating the constraints, while that of Player 2 is to either violate the state constraints, or otherwise, to maximize the payoff. One example of the game is a man-to-man matchup in football. Without state constraints, Cardaliaguet (2007) showed that the value of such a game exists and is convex to the common belief of players. Our theoretical contribution is an extension of this result to differential games with state constraints and the derivation of the primal and dual subdynamic principles necessary for computing the behavioral strategies. Compared with existing works on imperfect-information dynamic games that focus on scalability and generalization, our focus is instead on revealing the mechanism of belief manipulation behaviors resulted from information asymmetry and state constraints. We use a simplified football game to demonstrate the utility of this work, where we reveal player positions and belief states in which the attacker should (or should not) play specific random fake moves to take advantage of information asymmetry, and compute how the defender should respond. 
    more » « less
  2. In the classical discrete Colonel Blotto game—introducedby Borel in 1921—two colonels simultaneously distributetheir troops across multiple battlefields. The winner of eachbattlefield is determined by a winner-take-all rule, independentlyof other battlefields. In the original formulation, eachcolonel’s goal is to win as many battlefields as possible. TheBlotto game and its extensions have been used in a widerange of applications from political campaign—exemplifiedby the U.S presidential election—to marketing campaign,from (innovative) technology competition to sports competition.Despite persistent efforts, efficient methods for findingthe optimal strategies in Blotto games have been elusivefor almost a century—due to exponential explosion inthe organic solution space—until Ahmadinejad, Dehghani,Hajiaghayi, Lucier, Mahini, and Seddighin developed thefirst polynomial-time algorithm for this fundamental gametheoreticalproblem in 2016. However, that breakthroughpolynomial-time solution has some structural limitation. Itapplies only to the case where troops are homogeneous withrespect to battlegruounds, as in Borel’s original formulation:For each battleground, the only factor that matters to the winner’spayoff is how many troops as opposed to which sets oftroops are opposing one another in that battleground.In this paper, we consider a more general setting of thetwo-player-multi-battleground game, in which multifacetedresources (troops) may have different contributions to differentbattlegrounds. In the case of U.S presidential campaign,for example, one may interpret this as different typesof resources—human, financial, political—that teams can investin each state. We provide a complexity-theoretical evidencethat, in contrast to Borel’s homogeneous setting, findingoptimal strategies in multifaceted Colonel Blotto gamesis intractable. We complement this complexity result witha polynomial-time algorithm that finds approximately optimalstrategies with provable guarantees. We also study a furthergeneralization when two competitors do not have zerosum/constant-sum payoffs. We show that optimal strategiesin these two-player-multi-battleground games are as hard tocompute and approximate as Nash equilibria in general noncooperative games and economic equilibria in exchange markets. 
    more » « less
  3. In this work, we investigate a security game between an attacker and a defender, originally proposed in [6]. As is well known, the combinatorial nature of security games leads to a large cost matrix. Therefore, computing the value and optimal strategy for the players becomes computationally expensive. In this work, we analyze a special class of zero-sum games in which the payoff matrix has a special structure which results from the additive property of the utility function. Based on variational principles, we present structural properties of optimal attacker as well as defender’s strategy. We propose a linear-time algorithm to compute the value based on the structural properties, which is an improvement from our previous result in [6], especially in the context of large-scale zero-sum games. 
    more » « less
  4. In the Colonel Blotto game, which was initially introduced by Borel in 1921, two colonels simultaneously distribute their troops across different battlefields. The winner of each battlefield is determined independently by a winner-takes-all rule. The ultimate payoff for each colonel is the number of battlefields won. The Colonel Blotto game is commonly used for analyzing a wide range of applications from the U.S. Presidential election to innovative technology competitions to advertising, sports, and politics. There are persistent efforts to find the optimal strategies for the Colonel Blotto game. However, the first polynomial-time algorithm for that has very recently been provided by Ahmadinejad, Dehghani, Hajiaghayi, Lucier, Mahini, and Seddighin. Their algorithm consists of an exponential size linear program (LP), which they solve using the ellipsoid method. Because of the use of the ellipsoid method, despite its significant theoretical importance, this algorithm is highly impractical. In general, even the simplex method (despite its exponential running time in practice) performs better than the ellipsoid method in practice. In this paper, we provide the first polynomial-size LP formulation of the optimal strategies for the Colonel Blotto game using linear extension techniques. Roughly speaking, we consider the natural representation of the strategy space polytope and transform it to a higher dimensional strategy space, which interestingly has exponentially fewer facets. In other words, we add a few variables to the LP such that, surprisingly, the number of constraints drops down to a polynomial. We use this polynomial-size LP to provide a simpler and significantly faster algorithm for finding optimal strategies of the Colonel Blotto game. We further show this representation is asymptotically tight, which means there exists no other linear representation of the strategy space with fewer constraints. We also extend our approach to multidimensional Colonel Blotto games, in which players may have different sorts of budgets, such as money, time, human resources, etc. By implementing this algorithm, we are able to run tests that were previously impossible to solve in a reasonable time. This information allows us to observe some interesting properties of Colonel Blotto; for example, we find out the behavior of players in the discrete model is very similar to the continuous model Roberson solved. 
    more » « less
  5. Abstract Schmidt’s game and other similar intersection games have played an important role in recent years in applications to number theory, dynamics, and Diophantine approximation theory. These games are real games, that is, games in which the players make moves from a complete separable metric space. The determinacy of these games trivially follows from the axiom of determinacy for real games, $$\mathsf {AD}_{\mathbb R}$$ , which is a much stronger axiom than that asserting all integer games are determined, $$\mathsf {AD}$$ . One of our main results is a general theorem which under the hypothesis $$\mathsf {AD}$$ implies the determinacy of intersection games which have a property allowing strategies to be simplified. In particular, we show that Schmidt’s $$(\alpha ,\beta ,\rho )$$ game on $$\mathbb R$$ is determined from $$\mathsf {AD}$$ alone, but on $$\mathbb R^n$$ for $$n \geq 3$$ we show that $$\mathsf {AD}$$ does not imply the determinacy of this game. We then give an application of simple strategies and prove that the winning player in Schmidt’s $$(\alpha , \beta , \rho )$$ game on $$\mathbb {R}$$ has a winning positional strategy, without appealing to the axiom of choice. We also prove several other results specifically related to the determinacy of Schmidt’s game. These results highlight the obstacles in obtaining the determinacy of Schmidt’s game from $$\mathsf {AD}$$ . 
    more » « less