Abstract The amide bond N−C activation represents a powerful strategy in organic synthesis to functionalize the historically inert amide linkage. This personal account highlights recent remarkable advances in transition‐metal‐free activation of amides by N−C bond cleavage, focusing on both (1) mechanistic aspects of ground‐state‐destabilization of the amide bond enabling formation of tetrahedral intermediates directly from amides with unprecedented selectivity, and (2) synthetic utility of the developed transformations. Direct nucleophilic addition to amides enables a myriad of powerful methods for the formation of C−C, C−N, C−O and C−S bonds, providing a straightforward and more synthetically useful alternative to acyl‐metals.
more »
« less
Model output: CICE experiments with varying floe and wave physics
Model output from CICE experiments with varying floe size distribution and wave physics</p> </p> See manuscript below for further details:</p> Roach, L., C. Bitz, C. Horvat, and S. Dean (2019), Advances in modelling interactions between sea ice and ocean surface waves. Journal of Advances in Modeling Earth Systems (in review)</p>
more »
« less
- Award ID(s):
- 1643431
- PAR ID:
- 10342668
- Publisher / Repository:
- Zenodo
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the past several years, tremendous advances have been made in non-classical routes for amide bond formation that involve transamidation and amidation reactions of activated amides and esters. These new methods enable the formation of extremely valuable amide bonds via transition-metal- catalyzed, transition-metal-free or metal-free pathways by exploiting chemoselective acyl C–X (X = N, O) cleavage under mild conditions. In a broadest sense, these reactions overcome the formidable challenge of activating C–N/C–O bonds of amides or esters by rationally tackling nN→π*C=O delocalization in amides and nO→π*C=O donation in esters. In this account, we summarize the recent remarkable advances in the development of new methods for the synthesis of amides with a focus on (1) transition-metal/NHC- catalyzed C–N/C–O bond activation, (2) transition-metal-free highly selective cleavage of C–N/C–O bonds, (3) the development of new acyl-transfer reagents, and (4) other emerging methods.more » « less
-
Electrocatalytic CN Coupling: Advances in Urea Synthesis and Opportunities for Alternative ProductsUrea is an essential fertilizer produced through the industrial synthesis of ammonia (NH3) via the Haber–Bosch process, which contributes ≈1.2% of global annual CO2emissions. Electrocatalytic urea synthesis under ambient conditions via CN coupling from CO2and nitrogen species such as nitrate (NO3−), nitrite (NO2−), nitric oxide (NO), and nitrogen gas (N2) has gained interest as a more sustainable route. However, challenges remain due to the unclear reaction pathways for urea formation, competing reactions, and the complexity of the resulting product matrix. This review highlights recent advances in catalyst design, urea quantification, and intermediate identification in the CN coupling reaction for electrocatalytic urea synthesis. Furthermore, this review explores future prospects for industrial CN coupling, considering potential nitrogen and carbon sources and examining alternative CN coupling products, such as amides and amines.more » « less
-
null (Ed.)Controlling the reactivity of transition metal complexes by positioning non-innocent functionalities around the catalytic pocket is a concept that has led to significant advances in catalysis. Here we describe our efforts toward the synthesis of dicationic phosphine gold complexes of general formula [( o -Ph 2 P(C 6 H 4 )Carb)Au(tht)] 2+ decorated by a carbenium moiety (Carb) positioned in the immediate vicinity of the gold center. While the most acidic examples of such compounds have limited stability, the dicationic complexes with Carb + = 9- N -methylacridinium and Carb + = [C(Ar N ) 2 ] + (Ar N = p -(C 6 H 4 )NMe 2 ) are active as catalysts for the cycloisomerization of N -propargyl-4-fluorobenzamide, a substrate chosen to benchmark reactivity. The dicationic complex [( o -Ph 2 P(C 6 H 4 )C(Ar N ) 2 )Au(tht)] 2+ , which also promotes hydroarylation and enyne cyclization reactions, displays a higher catalytic activity than its acridinium analog, indicating that the electrophilic reactivity of these complexes scales with the Lewis acidity of the carbenium moiety. These results support the role of the carbenium unit as a non-innocent functionality which can readily enhance the activity of the adjacent metal center. Finally, we also describe our efforts toward the generation and isolation of free γ-cationic phosphines of general formula [( o -Ph 2 P(C 6 H 4 )Carb)] + . While cyclization into phosphonium species is observed for Carb + = [C(Ar N ) 2 ] + , [C(Ph)(Ar N )] + , and 9-xanthylium, [( o -Ph 2 P(C 6 H 4 )-9- N -methylacridinium)] + can be isolated as an air stable, biphilic derivative with uncompromised Lewis acidic and basic properties.more » « less
An official website of the United States government
