skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Articulating Spatial Statistics and Spatial Optimization Relationships: Expanding the Relevance of Statistics
Both historically and in terms of practiced academic organization, the anticipation should be that a flourishing synergistic interface exists between statistics and operations research in general, and between spatial statistics/econometrics and spatial optimization in particular. Unfortunately, for the most part, this expectation is false. The purpose of this paper is to address this existential missing link by focusing on the beneficial contributions of spatial statistics to spatial optimization, via spatial autocorrelation (i.e., dis/similar attribute values tend to cluster together on a map), in order to encourage considerably more future collaboration and interaction between contributors to their two parent bodies of knowledge. The key basic statistical concept in this pursuit is the median in its bivariate form, with special reference to the global and to sets of regional spatial medians. One-dimensional examples illustrate situations that the narrative then extends to two-dimensional illustrations, which, in turn, connects these treatments to the spatial statistics centrography theme. Because of computational time constraints (reported results include some for timing experiments), the summarized analysis restricts attention to problems involving one global and two or three regional spatial medians. The fundamental and foundational spatial, statistical, conceptual tool employed here is spatial autocorrelation: geographically informed sampling designs—which acknowledge a non-random mixture of geographic demand weight values that manifests itself as local, homogeneous, spatial clusters of these values—can help spatial optimization techniques determine the spatial optima, at least for location-allocation problems. A valuable discovery by this study is that existing but ignored spatial autocorrelation latent in georeferenced demand point weights undermines spatial optimization algorithms. All in all, this paper should help initiate a dissipation of the existing isolation between statistics and operations research, hopefully inspiring substantially more collaborative work by their professionals in the future.  more » « less
Award ID(s):
1951344
PAR ID:
10342691
Author(s) / Creator(s):
Date Published:
Journal Name:
Stats
Volume:
4
Issue:
4
ISSN:
2571-905X
Page Range / eLocation ID:
850 to 867
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Except for about a half dozen papers, virtually all (co)authored by Griffith, the existing literature lacks much content about the interface between spatial optimization, a popular form of geographic analysis, and spatial autocorrelation, a fundamental property of georeferenced data. The popularp‐median location‐allocation problem highlights this situation: the empirical geographic distribution of demand virtually always exhibits positive spatial autocorrelation. This property of geospatial data offers additional overlooked information for solving such spatial optimization problems when it actually relates to their solutions. With a proof‐of‐concept outlook, this paper articulates connections between the well‐known Majority Theorem of the 1‐median minisum problem and local indices of spatial autocorrelation; the LISA statistics appear to be the more useful of these later statistics because they better embrace negative spatial autocorrelation. The relationship articulation outlined here results in the positing of a new proposition labeled the egalitarian theorem. 
    more » « less
  2. The existing quantitative geography literature contains a dearth of articles that span spatial autocorrelation (SA), a fundamental property of georeferenced data, and spatial optimization, a popular form of geographic analysis. The well-known location–allocation problem illustrates this state of affairs, although its empirical geographic distribution of demand virtually always exhibits positive SA. This latent redundant attribute information alludes to other tools that may well help to solve such spatial optimization problems in an improved, if not better than, heuristic way. Within a proof-of-concept perspective, this paper articulates connections between extensions of the renowned Majority Theorem of the minisum problem and especially the local indices of SA (LISA). The relationship articulation outlined here extends to the p = 2 setting linkages already established for the p = 1 spatial median problem. In addition, this paper presents the foundation for a novel extremely efficient p = 2 algorithm whose formulation demonstratively exploits spatial autocorrelation. 
    more » « less
  3. Abstract Regime shifts have large consequences for ecosystems and the services they provide. However, understanding the potential for, causes of, proximity to, and thresholds for regime shifts in nearly all settings is difficult. Generic statistical indicators of resilience have been proposed and studied in a wide range of ecosystems as a method to detect when regime shifts are becoming more likely without direct knowledge of underlying system dynamics or thresholds. These early warning statistics (EWS) have been studied separately but there have been few examples that directly compare temporal and spatial EWS in ecosystem‐scale empirical data. To test these methods, we collected high‐frequency time series and high‐resolution spatial data during a whole‐lake fertilization experiment while also monitoring an adjacent reference lake. We calculated two common EWS, standard deviation and autocorrelation, in both time series and spatial data to evaluate their performance prior to the resulting algal bloom. We also applied the quickest detection method to generate binary alarms of resilience change from temporal EWS. One temporal EWS, rolling window standard deviation, provided advanced warning in most variables prior to the bloom, showing trends and between‐lake patterns consistent with theory. In contrast, temporal autocorrelation and both measures of spatial EWS (spatial SD, Moran's  I) provided little or no warning. By compiling time series data from this and past experiments with and without nutrient additions, we were able to evaluate temporal EWS performance for both constant and changing resilience conditions. True positive alarm rates were 2.5–8.3 times higher for rolling window standard deviation when a lake was being pushed towards a bloom than the rate of false positives when it was not. For rolling window autocorrelation, alarm rates were much lower and no variable had a higher true positive than false positive alarm rate. Our findings suggest temporal EWS provide advanced warning of algal blooms and that this approach could help managers prepare for and/or minimize negative bloom impacts. 
    more » « less
  4. Spatial prediction is to predict the values of the targeted variable, such as PM2.5 values and temperature, at arbitrary locations based on the collected geospatial data. It greatly affects the key research topics in geoscience in terms of obtaining heterogeneous spatial information (e.g., soil conditions, precipitation rates, wheat yields) for geographic modeling and decision-making at local, regional, and global scales. In-situ data, collected by ground-level in-situ sensors, and remote sensing data, collected by satellite or aircraft, are two important data sources for this task. In-situ data are relatively accurate while sparse and unevenly distributed. Remote sensing data cover large spatial areas but are coarse with low spatiotemporal resolution and prone to interference. How to synergize the complementary strength of these two data types is still a grand challenge. Moreover, it is difficult to model the unknown spatial predictive mapping while handling the trade-off between spatial autocorrelation and heterogeneity. Third, representing spatial relations without substantial information loss is also a critical issue. To address these challenges, we propose a novel Heterogeneous Self-supervised Spatial Prediction (HSSP) framework that synergizes multi-source data by minimizing the inconsistency between in-situ and remote sensing observations. We propose a new deep geometric spatial interpolation model as the prediction backbone that automatically interpolates the values of the targeted variable at unknown locations based on existing observations by taking into account both distance and orientation information. Our proposed interpolator is proven to both be the general form of popular interpolation methods and preserve spatial information. The spatial prediction is enhanced by a novel error-compensation framework to capture the prediction inconsistency due to spatial heterogeneity. Extensive experiments have been conducted on real-world datasets and demonstrated our model’s superiority in performance over state-of-the-art models. 
    more » « less
  5. This session is a basic introduction to descriptive statistics for research administration professionals. No worries! Excel will be used throughout, nothing will be calculated by hand. Averages (means), medians, standard deviations, correlations and other basic statistical concepts will be explained using only research administration data as context. A sample research administration data set will be provided and Excel will be used to analyze the data. Some sample charts and best practices in creating these charts will also be shown. Again using Excel. This is the perfect session for anyone in research administration whose roles include analyzing data using descriptive statistics. Whether you are new to statistics or whether you can't remember a statistics class you might have taken at some point. Basic knowledge of Excel would be helpful for this session. 
    more » « less