skip to main content

This content will become publicly available on July 1, 2023

Title: Design with Code Club: An attempt to get kids learning to code while designing solutions to everyday problems (Work in Progress)
Early in the pandemic we gathered a group of educators to create and share at-home educational opportunities for families to design and make STEAM projects while at home. As this effort, CoBuild19, continued, we decided to extend our offerings to include basic computer programming. To accomplish this, we created an offering called the Design with Code Club (DwCC). We structured DwCC to be different from other common coding offerings in that we wanted the main focus to be on kids designing solutions to problems that might include the use of technology and coding. We were purposeful in this decision for two main reasons. First, we wanted to make our coding club more interesting to girls, where previous research demonstrates their interest in designing solutions. Second, we wanted this effort to be different from most programming instruction, where coding activities use programming as the core of instruction and application in authentic and student-selected contexts plays a secondary role. DwCC was set up so that each of the first four weeks had a different larger challenge that was COVID-19 related and sessions unfolded with alternating smaller challenges, discussion around design and coding instruction that would develop their skills and knowledge of micro:bit more » capabilities. We culminated DwCC with an open-ended project where the kids were given the challenge of coming up with their own problem for which they might incorporate micro:bit as part of the solution. Because we were doing all of this online, we used the micro:bit interface through Microsoft MakeCode, which includes a functional simulator. From our experiences we realized that simulations are not as enticing as physical computing with a tangible device, so we set up an incentive where youth who participated in at least three sessions of the club would receive a physical micro:bit. We advertised DwCC through Facebook and twitter and had nearly 200 families register their kids to participate. In the end, a total of 52 micro:bits were sent to youth participants. Based on this success, we sought to expand the effort and increase accessibility for groups that are traditionally underrepresented in STEM. In spring 2021, we offered a Girls DwCC. This was a redesigned version of the club where the focus was even more on problem-solving through design. The club was run by all women, including one from the US, an Industrial Engineer from Mexico and a computer programmer from Albania. More than 50 girls from 17 countries participated in the club! We are working on another version of GDwCC that will be offered in Spanish and focus on Latina girls in the US and Mexico. In the most recent iteration of DwCC we are working with an educator at a school for deaf students to create a version of the club that works for their students. We are doing some modification of activities and recreating videos that involve sign language interpretation. In this presentation we will report on the variants of DwCC, results from participant feedback surveys and plans for future versions. « less
Authors:
; ; ;
Award ID(s):
2027368
Publication Date:
NSF-PAR ID:
10342778
Journal Name:
Zone 1 Conference of the American Society for Engineering Education
ISSN:
2332-368X
Sponsoring Org:
National Science Foundation
More Like this
  1. Our NSF-funded project, CoBuild19, sought to address the large-scale shift to at-home learning based on nationwide school closures that occurred during COVID-19 through creating making/STEM activities for families with children in grades K-6. Representing multiple organizations, our CoBuild19 project team developed approximately 60 STEM activities that make use of items readily available in most households. From March through June 2020, we produced and shared videos and activity guides, averaging 3+ new activities per week. Initially, the activities consisted of whatever team members could pull together, but we soon created weekly themes with associated activities, including Design and Prototype Week, Textiles Week, Social and Emotional Learning Week, and one week which highlighted kids sharing cooking and baking recipes for other kids. All activities were delivered fully online. To do so, our team started a Facebook group on March 13, 2020. Membership grew to 3490 followers by April 1st, to 4245 by May 1st, and leveled off at approximately 5100 members since June 2020. To date, 22 of our videos have over 1000 views, with the highest garnering 23K views. However, we had very little participation in the form of submitted videos, images, or text from families sharing what they were creating,more »limiting our possible analyses. While we had some initial participation by members, as the FB group grew, substantive evidence of participation faded. To better understand this drop, we polled FB group members about their use of the activities. Responses (n = 101) were dominated by the option, "We are glad to know the ideas are available, but we are not using much" (49%), followed by, "We occasionally do activities" (35%). At this point, we had no data about home participation, so we decided to experiment with different approaches. Our next efforts focused on conducting virtual maker/STEM camps. Leveraging the content produced in the first months of CoBuild19, we hosted two rounds of Camp CoBuild by the end of July, serving close to 100 campers. The camps generated richer data in the form of recorded Zoom camp sessions where campers made synchronously with educators and youth-created Flipgrid videos where campers shared their process and products for each activity. We also collected post-camp surveys and some caregiver interviews. Preliminary analyses have focused on the range of participant engagement and which malleable factors may be associated with deeper engagement. Initial feedback from caregivers indicated that their children gained confidence to experiment with simple materials through engaging in these activities. This project sought to fill what we perceived as a developing need in the community at a large scale (e.g., across the US). Although we have not achieved the level of success we expected, the project achieved quick growth that took us in a different direction than we originally intended. Overall, we created content that educators and families can use to engage kids with minimal materials. Additionally, we have a few models of extended engagement (e.g., Camp CoBuild) that we can develop further into future offerings.« less
  2. Developing a strong engineering identity, or sense of belonging in engineering, is essential to pursuing and persisting in the field. Participating in an engineering outreach program is widely seen as an opportunity for youth to ignite and increase an identity as an engineer. As early as elementary school, youth evaluate their experiences, interests, and successes to make choices about possible futures. Although these early experiences and choices influence future participation in, pursuit of, and persistence in engineering, studies of engineering identity development have concentrated on undergraduate and high school learners. This study examines engineering identity development in elementary school students participating in an engineering education outreach program, expanding understanding of early influences on engineering identity formation. This study asks: How do students’ descriptions of their engineering experiences indicate the influence their experiences have on their engineering identity development? This study is embedded in an NSF-funded study of a university-led engineering education outreach program. In this program, pairs of university students facilitated weekly hour-long engineering design challenges in elementary classrooms throughout the school year. At the end of the academic year, we conducted semi-structured interviews with 76 fourth- and fifth-grade students who had participated in the outreach program. The interviewers askedmore »students to rate their enjoyment of and skills in engineering within the context of the program. Iterative qualitative coding was used to elicit emergent patterns in students’ responses and examine them in the context of the Godwin et al (2016) engineering identity framework, using the constructs of interest, performance/competence, and recognition. Responses were then analyzed based on participants’ gender to understand and identify potential differences in influences on engineering identity development. Findings indicate that student talk around interest tended to be more positive, while student talk around performance/competence tended to be more negative, indicating the type of relationships students had with their interest in engineering compared to their perceived skills in doing engineering. However, within the construct of performance/competence, girls used negative language at a higher frequency than boys. Within this construct-based code, there were categories with large variations in positive and negative talk by gender. These gendered patterns provide insight into the differing ways girls and boys interact with engineering and how they start to develop engineering identities.« less
  3. Engineering instructors often use physical manipulatives such as foam beams, rolling cylinders, and large representations of axis systems to demonstrate mechanics concepts and help students visualize systems. Additional benefits are possible when manipulatives are in the hands of individual students or small teams of students who can explore concepts at their own pace and focus on their specific points of confusion. Online learning modalities require new strategies to promote spatial visualization and kinesthetic learning. Potential solutions include creating videos of the activities, using CAD models to demonstrate the principles, programming computer simulations, and providing hands-on manipulatives to students for at-home use. This Work-in-Progress paper discusses our experiences with this last strategy in statics courses two western community colleges and a western four-year university where we supplied students with their own hands-on kits. We have previously reported on the successful implementation of a hands-on statics kit consisting of 3D printed components and standard hardware. The kit was originally designed for use by teams of students during class to engage with topics such as vectors, moments, and rigid body equilibrium. With the onset of the COVID-19 pandemic and shift to online instruction, the first author developed a scaled down version of themore »kit for at-home use by individual students and modified the associated activity worksheets accordingly. For the community college courses, local students picked up their models at the campus bookstore. We also shipped some of the kits to students who were unable to come to campus, including some in other countries. Due to problems with printing and availability of materials, only 18 kits were available for the class of 34 students at the university implementation. Due to this circumstance, students were placed in teams and asked to work together virtually, one student showing the kit to the other student as they worked through the worksheet prompts. One community college instructor took this approach as well for a limited number of international students who did not receive their kits in a timely manner due to shipping problems. Two instructors assigned the hands-on kits as asynchronous learning activities in their respective online courses, with limited guidance on their use. The third used the kits primarily in synchronous online class meetings. We found that students’ reaction to the models varied by pilot site and presume that implementation differences contributed to this variation. In all cases, student feedback was less positive than it has been for face-to-face courses that used the models from which the take home kit was adapted. Our main conclusion is that implementation matters. Doing hands-on learning in an online course requires some fundamental rethinking about how the learning is structured and scaffolded.« less
  4. Student perceptions of the complete online transition of two CS courses in response to the COVID-19 pandemic Due to the COVID-19 pandemic, universities across the globe switched from traditional Face-to-Face (F2F) course delivery to completely online. Our university declared during our Spring break that students would not return to campus, and that all courses must be delivered fully online starting two weeks later. This was challenging to both students and instructors. In this evidence-based practice paper, we present results of end-of-semester student surveys from two Spring 2020 CS courses: a programming intensive CS2 course, and a senior theory course in Formal Languages and Automata (FLA). Students indicated course components they perceived as most beneficial to their learning, before and then after the online transition, and preferences for each regarding online vs. F2F. By comparing student reactions across courses, we gain insights on which components are easily adapted to online delivery, and which require further innovation. COVID was unfortunate, but gave a rare opportunity to compare students’ reflections on F2F instruction with online instructional materials for half a semester vs. entirely online delivery of the same course during the second half. The circumstances are unique, but we were able to acquiremore »insights for future instruction. Some course components were perceived to be more useful either before or after the transition, and preferences were not the same in the two courses, possibly due to differences in the courses. Students in both courses found prerecorded asynchronous lectures significantly less useful than in-person lectures. For CS2, online office hours were significantly less useful than in-person office hours, but we found no significant difference in FLA. CS2 students felt less supported by their instructor after the online transition, but no significant difference was indicated by FLA students. FLA students found unproctored online exams offered through Canvas more stressful than in-person proctored exams, but the opposite was indicated by CS2 students. CS2 students indicated that visual materials from an eTextbook were more useful to them after going online than before, but FLA students indicated no significant difference. Overall, students in FLA significantly preferred the traditional F2F version of the course, while no significant difference was detected for CS2 students. We did not find significant effects from gender on the preference of one mode over the other. A serendipitous outcome was learning that some changes forced by circumstance should be considered for long term adoption. Offering online lab sessions and online exams where the questions are primarily multiple choice are possible candidates. However, we found that students need to feel the presence of their instructor to feel properly supported. To determine what course components need further improvement before transitioning to fully online mode, we computed a logistic regression model. The dependent variable is the student's preference for F2F or fully online. The independent variables are the course components before and after the online transition. For both courses, in-person lectures were a significant factor negatively affecting students' preferences of the fully online mode. Similarly, for CS2, in-person labs and in-person office hours were significant factors pushing students’ preferences toward F2F mode.« less
  5. Abstract

    In response to the growing computational intensity of the healthcare industry, biomedical engineering (BME) undergraduate education is placing increased emphasis on computation. The presence of substantial gender disparities in many computationally intensive disciplines suggests that the adoption of computational instruction approaches that lack intentionality may exacerbate gender disparities. Educational research suggests that the development of an engineering and computational identity is one factor that can support students’ decisions to enter and persist in an engineering major. Discipline-based identity research is used as a lens to understand retention and persistence of students in engineering. Our specific purpose is to apply discipline-based identity research to define and explore the computational identities of undergraduate engineering students who engage in computational environments. This work will inform future studies regarding retention and persistence of students who engage in computational courses. Twenty-eight undergraduate engineering students (20 women, 8 men) from three engineering majors (biomedical engineering, agricultural engineering, and biological engineering) participated in semi-structured interviews. The students discussed their experiences in a computationally-intensive thermodynamics course offered jointly by the Biomedical Engineering and Agricultural & Biological Engineering departments. The transcribed interviews were analyzed through thematic coding. The gender stereotypes associated with computer programming also come part andmore »parcel with computer programming, possibly threatening a student's sense of belonging in engineering. The majority of the participants reported that their computational identity was “in the making.” Students’ responses also suggested that their engineering identity and their computational identity were in congruence, while some incongruence is found between their engineering identity and a creative identity as well as between computational identity and perceived feminine norms. Responses also indicate that students associate specific skills with having a computational identity. This study's findings present an emergent thematic definition of a computational person constructed from student perceptions and experiences. Instructors can support students’ nascent computational identities through intentional mitigation of the gender stereotypes and biases, and by framing assignments to focus on developing specific skills associated with the computational modeling processes.

    « less