skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Azimuthal Metallicity Structure in the Milky Way Disk Revealed by Galactic HII Regions
The present-day metallicity structure of the Galactic disk is the product of billions of years of chemodynamical evolution. We use the National Radio Astronomy Observatory Karl G. Jansky Very Large Array to measure 8-10 GHz radio continuum and hydrogen radio recombination line (RRL) emission toward 82 Galactic HII regions. Since collisionally excited lines from metals (e.g., oxygen, nitrogen) are the primary cooling mechanism in ionized gas, the HII region electron temperature is empirically correlated to the nebular metallicity. We use the RRL-to-continuum ratio to derive electron temperatures and infer metallicities of these Galactic HII regions. Including previous single dish studies, there are now 167 nebulae with radio-determined electron temperatures and either parallax or kinematic distance determinations. The HII region oxygen abundance gradient across the Milky Way disk has a slope of -0.052 ± 0.004 dex/kpc. We find significant azimuthal structure in the metallicity distribution. The slope of the oxygen abundance gradient varies by a factor of ~2 between Galactocentric azimuths of 30 degrees and 100 degrees. Such azimuthal structure is consistent with simulations of Galactic chemodynamical evolution influenced by spiral arms.  more » « less
Award ID(s):
1714688
PAR ID:
10342809
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
American Astronomical Society meeting #235
Volume:
52
Issue:
1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hiiregion heavy-element abundances throughout the Galactic disk provide important constraints to theories of the formation and evolution of the Milky Way. In LTE, radio recombination line (RRL) emission and free–free continuum emission are accurate extinction-free tracers of the Hiiregion electron temperature. Since metals act as coolants in Hiiregions via the emission of collisionally excited lines, the electron temperature is a proxy for metallicity. Shaver et al. found a linear relationship between metallicity and electron temperature with little scatter. Here we use CLOUDY Hiiregion simulations to (1) investigate the accuracy of using RRLs to measure the electron temperature and (2) explore the metallicity–electron temperature relationship. We model 135 Hiiregions with different ionizing radiation fields, densities, and metallicities. We find that electron temperatures derived under the assumption of LTE are about 20% systematically higher owing to non-LTE effects, but overall LTE is a good assumption for centimeter-wavelength RRLs. Our CLOUDY simulations are consistent with the Shaver et al. metallicity–electron temperature relationship, but there is significant scatter since earlier spectral types or higher electron densities yield higher electron temperatures. Using RRLs to derive electron temperatures assuming LTE yields errors in the predicted metallicity as large as 10%. We derive correction factors for log(O/H) + 12 in each CLOUDY simulation. For lower metallicities the correction factor depends primarily on the spectral type of the ionizing star and ranges from 0.95 to 1.10, whereas for higher metallicities the correction factor depends on the density and is between 0.97 and 1.05. 
    more » « less
  2. Metallicity structure provides a critical constraint on the formation history and subsequent chemical evolution of the Milky Way. In thermal equilibrium the abundance of the coolants (O, N, and other heavy elements) in the ionized gas regulates the electron temperature, with high abundances producing low temperatures. Here we attempt to better calibrate this relationship between the plasma electron temperature, Te, and O/H by observing [OIII] (52 and 88 μm), [NIII] (57 μm), and [NII] (122 μm) toward 9 HII regions with the Herschel telescope. We derive Te in HII regions with radio recombination lines (RRLs) and use them as proxies for the nebular O/H abundances. We derive ionic abundance ratios in the well studied HII region W3A to test our calibration and analysis procedures. We find that the O/H abundance ratio varies by a factor of 5 across W3A with uncertainties that are as large as 50%, inconsistent with previous results. We suspect that the standard calibration procedures employed by Herschel, which assume the source is uniform, explains the large O/H variations in W3A. 
    more » « less
  3. The interstellar medium (ISM) of galaxies like the Milky Way contains low-density diffuse ionized gas (DIG). High-mass stars emit large amounts of ionizing radiation and it is believed that a fraction of this radiation escapes from their HII regions and into the ISM where it is responsible for maintaining the ionization of the DIG. The goal of this dissertation work is to better understand how the radiation produced by high-mass stars is able to leak from the HII regions, how the radiation field changes during this process, and how the radiation affects the ambient ISM. Using Green Bank Telescope (GBT) pointed radio recombination line (RRL) data of a subset of Galactic HII regions and fully-sampled RRL maps from the GBT Diffuse Ionized Gas Survey (GDIGS), we show that the morphology of the photodissociation region surrounding an HII region strongly affects the amount of leaking radiation. We also show that physically large HII regions affect the surrounding ISM out to larger distances from the region. This indicates that giant HII region complexes may have a greater effect on maintaining the ionization of the DIG. We find a correlation between dust temperature and integrated RRL intensity, suggesting that the same radiation field that heats the dust also maintains the ionization of the DIG. 
    more » « less
  4. The Milky Way contains a significant number of unconfirmed HII regions, the archetypical tracers of Galactic high-mass star formation. There are over 2000 confirmed HII regions in the Milky Way, but our Milky Way surveys are deficient by several thousand HII regions when compared to external galaxies with similar star formation rates. This is odd given our close proximity to these Milky Way HII regions compared to distant extragalactic sources. Through sensitive 9 GHz radio continuum observations with the Jansky Very Large Array, we explore a faint class of unconfirmed HII region candidates to put limits on the total population of Galactic HII regions. We show that stars of spectral type B2 create HII regions with similar infrared and radio continuum morphologies as those HII regions created by O-stars. We achieve this by measuring the peak and integrated radio flux densities from these faint infrared-identified objects and comparing the inferred Lyman continuum fluxes with spectral models of OB-stars. From our 50% detection rate of previously "radio quiet" sources from the WISE Catalog of Galactic HII regions, we expect a lower limit of ~7000 HII regions in our Galaxy. We have not yet discovered the vast majority of the Milky Way's HII regions. 
    more » « less
  5. We present an overview of the Green Bank Telescope (GBT) Diffuse Ionized Gas Survey (GDIGS) and the GBT Diffuse Ionized Gas Survey at Low Frequencies (GDIGS-Low). Both GDIGS surveys trace ionized gas in the Galactic midplane by observing radio recombination line (RRL) emission. GDIGS observes RRLs in the 4-8 GHz range and GDIGS-Low maps RRL emission at 800 MHz and 340 MHz. The nominal survey zone for both surveys is 32.3° > ℓ > -5°, |b| < 0.5°, with extensions above and below that latitude limit in select fields as well as coverage of the areas around W47 (ℓ≃37.5°), W49 (ℓ≃43°), and Cygnus X (ℓ≃80°). The goal of these surveys is to better understand the planar Diffuse Ionized Gas (DIG), including its physical properties, its dynamical state and distribution, its relationship with HII regions, and the means by which it is ionized. We discuss an analysis of the DIG around the HII region complex W43 (Luisi et. al. 2020) and a study of discrete sources of emission in the GDIGS survey area (Linville et. al. 2023). We also discuss how we will use GDIGS data to determine the ionic 4He+/ H+ abundance ratio (y+) in the DIG and how we will combine RRL observations from GDIGS and GDIGS-Low to calculate the electron density of the DIG. 
    more » « less