skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Full ellipsoid embeddings and toric mutations
Abstract This article introduces a new method to construct volume-filling symplectic embeddings of 4-dimensional ellipsoids by employing polytope mutations in toric and almost toric varieties. The construction uniformly recovers the full sequences for the Fibonacci Staircase of McDuff–Schlenk, the Pell Staircase of Frenkel–Müller and the Cristofaro-Gardiner–Kleinman Staircase, and adds new infinite sequences of ellipsoid embeddings. In addition, we initiate the study of symplectic-tropical curves for almost toric fibrations and emphasize the connection to quiver combinatorics.  more » « less
Award ID(s):
1942363
PAR ID:
10342848
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Selecta Mathematica
Volume:
28
Issue:
3
ISSN:
1022-1824
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ellipsoidal capacity function of a symplectic four manifoldXmeasures how much the form onXmust be dilated in order for it to admit an embedded ellipsoid of eccentricityz. In most cases there are just finitely many obstructions to such an embedding besides the volume. If there are infinitely many obstructions,Xis said to have a staircase. This paper gives an almost complete description of the staircases in the ellipsoidal capacity functions of the family of symplectic Hirzebruch surfacesH_{b}formed by blowing up the projective plane with weightb. We describe an interweaving, recursively defined, family of obstructions to symplectic embeddings of ellipsoids that show there is an open dense set of shape parametersbthat are blocked, i.e. have no staircase, and an uncountable number of other values ofbthat do admit staircases. The remainingb-values form a countable sequence of special rational numbers that are closely related to the symmetries discussed in Magill–McDuff (arXiv:2106.09143). We show that none of them admit ascending staircases. Conjecturally, none admit descending staircases. Finally, we show that, as long asbis not one of these special rational values, any staircase inH_{b}has irrational accumulation point. A crucial ingredient of our proofs is the new, more indirect approach to using almost toric fibrations in the analysis of staircases by Magill (arXiv:2204.12460). In particular, the structure of the relevant mutations of the set of almost toric fibrations onH_{b}is echoed in the structure of the set of blockedb-intervals. 
    more » « less
  2. We develop new methods of both constructing and obstructing symplectic embeddings into nontoric rational surfaces using the theory of Newton–Okoukov bodies. Applications include sharp embedding results for concave toric domains into nontoric rational surfaces, and new cases of nonexistence for infinite staircases in the nontoric setting. 
    more » « less
  3. Abstract The ellipsoid embedding function of a symplectic manifold gives the smallest amount by which the symplectic form must be scaled in order for a standard ellipsoid of the given eccentricity to embed symplectically into the manifold. It was first computed for the standard four‐ball (or equivalently, the complex projective plane) by McDuff and Schlenk, and found to contain the unexpected structure of an “infinite staircase,” that is, an infinite sequence of nonsmooth points arranged in a piecewise linear stair‐step pattern. Later work of Usher and Cristofaro‐Gardiner–Holm–Mandini–Pires suggested that while four‐dimensional symplectic toric manifolds with infinite staircases are plentiful, they are highly nongeneric. This paper concludes the systematic study of one‐point blowups of the complex projective plane, building on previous work of Bertozzi‐Holm‐Maw‐McDuff‐Mwakyoma‐Pires‐Weiler, Magill‐McDuff, Magill‐McDuff‐Weiler, and Magill on these Hirzebruch surfaces. We prove a conjecture of Cristofaro‐Gardiner–Holm–Mandini–Pires for this family: that if the blowup is of rational weight and the embedding function has an infinite staircase then that weight must be . We show also that the function for this manifold does not have a descending staircase. Furthermore, we give a sufficient and necessary condition for the existence of an infinite staircase in this family which boils down to solving a quadratic equation and computing the function at one specific value. Many of our intermediate results also apply to the case of the polydisk (or equivalently, the symplectic product of two spheres). 
    more » « less
  4. The embedded contact homology (ECH) capacities are a sequence of numerical invariants of symplectic four-manifolds that give (sometimes sharp) obstructions to symplectic embeddings. These capacities are defined using embedded contact homology, and establishing their basic properties currently requires Seiberg–Witten theory. In this paper we define a sequence of symplectic capacities in four dimensions using only basic notions of holomorphic curves. The capacities satisfy the same basic properties as ECH capacities and agree with the ECH capacities for the main examples for which the latter have been computed, namely convex and concave toric domains. The capacities are also useful for obstructing symplectic embeddings into closed symplectic four-manifolds. This work is inspired by a recent preprint of McDuff and Siegel [D. McDuff, K. Siegel, arXiv [Preprint] (2021)], giving a similar elementary alternative to symplectic capacities from rational symplectic field theory (SFT). 
    more » « less
  5. We use explicit pseudoholomorphic curve techniques (without virtual perturbations) to define a sequence of symplectic capacities analogous to those defined recently by the second named author using symplectic field theory. We then compute these capacities for all four-dimensional convex toric domains. This gives various new obstructions to stabilized symplectic embedding problems which are sometimes sharp. 
    more » « less