skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Symplectic capacities, unperturbed curves, and convex toric domains
We use explicit pseudoholomorphic curve techniques (without virtual perturbations) to define a sequence of symplectic capacities analogous to those defined recently by the second named author using symplectic field theory. We then compute these capacities for all four-dimensional convex toric domains. This gives various new obstructions to stabilized symplectic embedding problems which are sometimes sharp.  more » « less
Award ID(s):
2105578
PAR ID:
10434235
Author(s) / Creator(s):
Date Published:
Journal Name:
Geometry topology
ISSN:
1465-3060
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The embedded contact homology (ECH) capacities are a sequence of numerical invariants of symplectic four-manifolds that give (sometimes sharp) obstructions to symplectic embeddings. These capacities are defined using embedded contact homology, and establishing their basic properties currently requires Seiberg–Witten theory. In this paper we define a sequence of symplectic capacities in four dimensions using only basic notions of holomorphic curves. The capacities satisfy the same basic properties as ECH capacities and agree with the ECH capacities for the main examples for which the latter have been computed, namely convex and concave toric domains. The capacities are also useful for obstructing symplectic embeddings into closed symplectic four-manifolds. This work is inspired by a recent preprint of McDuff and Siegel [D. McDuff, K. Siegel, arXiv [Preprint] (2021)], giving a similar elementary alternative to symplectic capacities from rational symplectic field theory (SFT). 
    more » « less
  2. It is a long-standing conjecture that all symplectic capacities which are equal to the Gromov width for ellipsoids coincide on a class of convex domains in\mathbb{R}^{2n}. It is known that they coincide for monotone toric domains in all dimensions. In this paper, we study whether requiring a capacity to be equal to thekth Ekeland–Hofer capacity for all ellipsoids can characterize it on a class of domains. We prove that fork=n=2, this holds for convex toric domains, but not for all monotone toric domains. We also prove that, fork=n\ge 3, this does not hold even for convex toric domains. 
    more » « less
  3. Williamson's theorem states that for any 2n×2n real positive definite matrix A, there exists a 2n×2n real symplectic matrix S such that STAS=D⊕D, where D is an n×n diagonal matrix with positive diagonal entries which are known as the symplectic eigenvalues of A. Let H be any 2n×2n real symmetric matrix such that the perturbed matrix A+H is also positive definite. In this paper, we show that any symplectic matrix S̃ diagonalizing A+H in Williamson's theorem is of the form S̃ =SQ+(‖H‖), where Q is a 2n×2n real symplectic as well as orthogonal matrix. Moreover, Q is in symplectic block diagonal form with the block sizes given by twice the multiplicities of the symplectic eigenvalues of A. Consequently, we show that S̃ and S can be chosen so that ‖S̃ −S‖=(‖H‖). Our results hold even if A has repeated symplectic eigenvalues. This generalizes the stability result of symplectic matrices for non-repeated symplectic eigenvalues given by Idel, Gaona, and Wolf [Linear Algebra Appl., 525:45-58, 2017]. 
    more » « less
  4. A symplectic rational cuspidal curve with positive self-intersection number admits a concave neighborhood, and thus a corresponding contact manifold on the boundary. In this article, we study symplectic fillings of such contact manifolds, providing a complementary perspective to our earlier article on symplectic isotopy classes of rational cuspidal curves. We explore aspects of these symplectic fillings through Stein handlebodies and rational blow-downs. We give examples of such contact manifolds which are identifiable as links of normal surface singularities, other examples which admit no symplectic fillings, and further examples where the fillings can be fully classified. 
    more » « less
  5. We define a suitably tame class of singular symplectic curves in 4-manifolds, namely those whose singularities are modeled on complex curve singularities. We study the corresponding symplectic isotopy problem, with a focus on rational curves with irreducible singularities (rational cuspidal curves) in the complex projective plane. We prove that every such curve is isotopic to a complex curve in degrees up to five, and for curves with one singularity whose link is a torus knot. Classification results of symplectic isotopy classes rely on pseudo-holomorphic curves together with a symplectic version of birational geometry of log pairs and techniques from four-dimensional topology. 
    more » « less