skip to main content


Title: Life-history traits predict responses of wild bees to climate variation
Life-history traits, which are physical traits or behaviours that affect growth, survivorship and reproduction, could play an important role in how well organisms respond to environmental change. By looking for trait-based responses within groups, we can gain a mechanistic understanding of why environmental change might favour or penalize certain species over others. We monitored the abundance of at least 154 bee species for 8 consecutive years in a subalpine region of the Rocky Mountains to ask whether bees respond differently to changes in abiotic conditions based on their life-history traits. We found that comb-building cavity nesters and larger bodied bees declined in relative abundance with increasing temperatures, while smaller, soil-nesting bees increased. Further, bees with narrower diet breadths increased in relative abundance with decreased rainfall. Finally, reduced snowpack was associated with reduced relative abundance of bees that overwintered as prepupae whereas bees that overwintered as adults increased in relative abundance, suggesting that overwintering conditions might affect body size, lipid content and overwintering survival. Taken together, our results show how climate change may reshape bee pollinator communities, with bees with certain traits increasing in abundance and others declining, potentially leading to novel plant–pollinator interactions and changes in plant reproduction.  more » « less
Award ID(s):
2016749
NSF-PAR ID:
10342881
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
289
Issue:
1973
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Human‐mediated species introductions provide real‐time experiments in how communities respond to interspecific competition. For example, managed honey beesApis mellifera(L.) have been widely introduced outside their native range and may compete with native bees for pollen and nectar. Indeed, multiple studies suggest that honey bees and native bees overlap in their use of floral resources. However, for resource overlap to negatively impact resource collection by native bees, resource availability must also decline, and few studies investigate impacts of honey bee competition on native bee floral visits and floral resource availability simultaneously.

    In this study, we investigate impacts of increasing honey bee abundance on native bee visitation patterns, pollen diets, and nectar and pollen resource availability in two Californian landscapes: wildflower plantings in the Central Valley and montane meadows in the Sierra.

    We collected data on bee visits to flowers, pollen and nectar availability, and pollen carried on bee bodies across multiple sites in the Sierra and Central Valley. We then constructed plant‐pollinator visitation networks to assess how increasing honey bee abundance impacted perceived apparent competition (PAC), a measure of niche overlap, and pollinator specialization (d'). We also compared PAC values against null expectations to address whether observed changes in niche overlap were greater or less than what we would expect given the relative abundances of interacting partners.

    We find clear evidence of exploitative competition in both ecosystems based on the following results: (1) honey bee competition increased niche overlap between honey bees and native bees, (2) increased honey bee abundance led to decreased pollen and nectar availability in flowers, and (3) native bee communities responded to competition by shifting their floral visits, with some becoming more specialized and others becoming more generalized depending on the ecosystem and bee taxon considered.

    Although native bees can adapt to honey bee competition by shifting their floral visits, the coexistence of honey bees and native bees is tenuous and will depend on floral resource availability. Preserving and augmenting floral resources is therefore essential in mitigating negative impacts of honey bee competition. In two California ecosystems, honey bee competition decreases pollen and nectar resource availability in flowers and alters native bee diets with potential implications for bee conservation and wildlands management.

     
    more » « less
  2. Within the United States and Canada, the primary pollinator of alfalfa is the alfalfa leafcutting bee (ALCB), Megachile rotundata . Our previous findings showed that overwintering conditions impacted gene expression profile in ALCB prepupae that entered diapause early in the season. However, ALCB are a bivoltine species, which begs the question of whether bees entering diapause later in the season also show this trend. To better understand the effects of the timing of diapause initiation, we analyzed mRNA copy number of genes known to be involved in diapause regulation in early and late season diapausing ALCB that were overwintered in field conditions or using current agricultural management conditions. We hypothesized that overwintering conditions for late diapausing bees also affects gene expression profiles. Our results showed that expression profiles were altered by both overwintering condition and timing of diapause initiation, with bees that entered diapause earlier in the season showing different expression patterns than those that entered diapause later in the season. This trend was seen in expression of members of the cyclin family and several targets of the insulin signaling pathway, including forkhead box protein O (FOXO), which is known to be important for diapause regulation and stress responses. But, of the genes screened, the proto-oncogene, Myc , was the most impacted by the timing of diapause initiation. Under field conditions, there were significant differences in Myc expression between the early and late season samples in all months except for November and February. This same general trend in Myc expression was also seen in the laboratory-maintained bees with significant difference in expression in all months except for November, February, and May. These results support previous conclusions from our research showing that the molecular regulation of diapause development in ALCB is not a simple singular cascade of gene expression but a highly plastic response that varies between bees depending upon their environmental history. 
    more » « less
  3. Abstract

    Introduced species can have cascading effects on ecological communities, but indirect effects of species introductions are rarely the focus of ecological studies. For example, managed honey bees (Apis mellifera) have been widely introduced outside their native range and are increasingly dominant floral visitors. Multiple studies have documented how honey bees impact native bee communities through floral resource competition, but few have quantified how these competitive interactions indirectly affect pollination and plant reproduction. Such indirect effects are hard to detect because honey bees are themselves pollinators and may directly impact pollination through their own floral visits. The potentially huge but poorly understood impacts that non‐native honey bees have on native plant populations combined with increased pressure from beekeepers to place hives in U.S. National Parks and Forests makes exploring impacts of honey bee introductions on native plant pollination of pressing concern. In this study, we used experimental hive additions, field observations, as well as single‐visit and multiple‐visit pollination effectiveness trials across multiple years to untangle the direct and indirect impacts of increasing honey bee abundance on the pollination of an ecologically important wildflower,Camassia quamash. We found compelling evidence that honey bee introductions indirectly decrease pollination by reducing nectar and pollen availability and competitively excluding visits from more effective native bees. In contrast, the direct impact of honey bee visits on pollination was negligible, and, if anything, negative. Honey bees were ineffective pollinators, and increasing visit quantity could not compensate for inferior visit quality. Indeed, although the effect was not statistically significant, increased honey bee visits had a marginally negative impact on seed production. Thus, honey bee introductions may erode longstanding plant‐pollinator mutualisms, with negative consequences for plant reproduction. Our study calls for a more thorough understanding of the indirect effects of species introductions and more careful coordination of hive placements.

     
    more » « less
  4. Concern about pollinator populations is widespread, with bees documented to be in decline due to factors including habitat loss, disease, and pesticides. In addition, climate change may be an important cause of bee population losses, but few studies have examined bee abundance relationships with climate variables. Importantly, bees may respond directly to climate or may exhibit indirect responses to climate via changes in plant phenology or community composition. This study collected floral trait data to complement the Sevilleta LTER pollinator monitoring, plant phenology, and plant biomass datasets, with the aim of examining whether floral resource availability mediates bee responses to climate. For 71 common, animal-pollinated flowering plant species, we measured floral traits relevant to pollination in June–October 2018 and April–August 2019 within sites representing four ecosystem types at the Sevilleta National Wildlife Refuge: Plains grassland, Chihuahuan Desert grassland, Chihuahuan Desert shrubland, and piñon-juniper woodland. On a minimum of 5 individuals per plant species, we recorded the total number of open flowers and the corolla width of flowers, along with plant height and vegetative cover. These data may be used in combination with the Sevilleta LTER pollinator monitoring, phenology, and biomass datasets to examine how bee and floral resource abundance, diversity, and phenology vary across years and whether these changes correspond with one another, as well as to consider relationships among climate, floral resource abundance/diversity, and bee abundance/diversity. 
    more » « less
  5. Abstract

    Climate change is shifting the environmental cues that determine the phenology of interacting species. Plant–pollinator systems may be susceptible to temporal mismatch if bees and flowering plants differ in their phenological responses to warming temperatures. While the cues that trigger flowering are well‐understood, little is known about what determines bee phenology. Using generalised additive models, we analyzed time‐series data representing 67 bee species collected over 9 years in the Colorado Rocky Mountains to perform the first community‐wide quantification of the drivers of bee phenology. Bee emergence was sensitive to climatic variation, advancing with earlier snowmelt timing, whereas later phenophases were best explained by functional traits including overwintering stage and nest location. Comparison of these findings to a long‐term flower study showed that bee phenology is less sensitive than flower phenology to climatic variation, indicating potential for reduced synchrony of flowers and pollinators under climate change.

     
    more » « less