skip to main content


Title: Chasing the Tail of Cosmic Reionization with Dark Gap Statistics in the Lyα Forest over 5 < z < 6
Abstract We present a new investigation of the intergalactic medium (IGM) near the end of reionization using “dark gaps” in the Ly α forest. Using spectra of 55 QSOs at z em > 5.5, including new data from the XQR-30 VLT Large Programme, we identify gaps in the Ly α forest where the transmission averaged over 1 comoving h −1 Mpc bins falls below 5%. Nine ultralong ( L > 80 h −1 Mpc) dark gaps are identified at z < 6. In addition, we quantify the fraction of QSO spectra exhibiting gaps longer than 30 h −1 Mpc, F 30 , as a function of redshift. We measure F 30 ≃ 0.9, 0.6, and 0.15 at z = 6.0, 5.8, and 5.6, respectively, with the last of these long dark gaps persisting down to z ≃5.3. Comparing our results with predictions from hydrodynamical simulations, we find that the data are consistent with models wherein reionization extends significantly below redshift six. Models wherein the IGM is essentially fully reionized that retain large-scale fluctuations in the ionizing UV background at z ≲6 are also potentially consistent with the data. Overall, our results suggest that signatures of reionization in the form of islands of neutral hydrogen and/or large-scale fluctuations in the ionizing background remain present in the IGM until at least z ≃ 5.3.  more » « less
Award ID(s):
1751404 1908284
NSF-PAR ID:
10342942
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
923
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
223
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The mean free path of ionizing photons,λmfp, is a critical parameter for modeling the intergalactic medium (IGM) both during and after reionization. We present direct measurements ofλmfpfrom QSO spectra over the redshift range 5 <z< 6, including the first measurements atz≃ 5.3 and 5.6. Our sample includes data from the XQR-30 VLT large program, as well as new Keck/ESI observations of QSOs nearz∼ 5.5, for which we also acquire new [Cii] 158μm redshifts with ALMA. By measuring the Lyman continuum transmission profile in stacked QSO spectra, we findλmfp=9.331.80+2.06,5.401.40+1.47,3.311.34+2.74, and0.810.48+0.73pMpc atz= 5.08, 5.31, 5.65, and 5.93, respectively. Our results demonstrate thatλmfpincreases steadily and rapidly with time over 5 <z< 6. Notably, we find thatλmfpdeviates significantly from predictions based on a fully ionized and relaxed IGM as late asz= 5.3. By comparing our results to model predictions and indirectλmfpconstraints based on IGM Lyαopacity, we find that the evolution ofλmfpis consistent with scenarios wherein the IGM is still undergoing reionization and/or retains large fluctuations in the ionizing UV background well below redshift 6.

     
    more » « less
  2. Abstract

    We present a new investigation of the intergalactic medium near reionization using dark gaps in the Lyβforest. With its lower optical depth, Lyβoffers a potentially more sensitive probe to any remaining neutral gas compared to the commonly used Lyαline. We identify dark gaps in the Lyβforest using spectra of 42 QSOs atzem> 5.5, including new data from the XQR-30 VLT Large Programme. Approximately 40% of these QSO spectra exhibit dark gaps longer than 10h−1Mpc atz≃ 5.8. By comparing the results to predictions from simulations, we find that the data are broadly consistent both with models where fluctuations in the Lyαforest are caused solely by ionizing ultraviolet background fluctuations and with models that include large neutral hydrogen patches atz< 6 due to a late end to reionization. Of particular interest is a very long (L= 28h−1Mpc) and dark (τeff≳ 6) gap persisting down toz≃ 5.5 in the Lyβforest of thez= 5.85 QSO PSO J025−11. This gap may support late reionization models with a volume-weighted average neutral hydrogen fraction of 〈xH I〉 ≳ 5% byz= 5.6. Finally, we infer constraints on 〈xH I〉 over 5.5 ≲z≲ 6.0 based on the observed Lyβdark gap length distribution and a conservative relationship between gap length and neutral fraction derived from simulations. We find 〈xH I〉 ≤ 0.05, 0.17, and 0.29 atz≃ 5.55, 5.75, and 5.95, respectively. These constraints are consistent with models where reionization ends significantly later thanz= 6.

     
    more » « less
  3. Abstract

    Observed scatter in the Lyαopacity of quasar sightlines atz< 6 has motivated measurements of the correlation between Lyαopacity and galaxy density, as models that predict this scatter make strong and sometimes opposite predictions for how they should be related. Our previous work associated two highly opaque Lyαtroughs atz∼ 5.7 with a deficit of Lyαemitting galaxies (LAEs). In this work, we survey two of the most highly transmissive lines of sight at this redshift toward thez= 6.02 quasar SDSS J1306+0356 and thez= 6.17 quasar PSO J359-06. We find that both fields are underdense in LAEs within 10h−1Mpc of the quasar sightline, somewhat less extensive than underdensities associated with Lyαtroughs. We combine our observations with three additional fields from the literature and find that while fields with extreme opacities are generally underdense, moderate opacities span a wider density range. The results at high opacities are consistent with models that invoke UV background fluctuations and/or late reionization to explain the observed scatter in intergalactic medium (IGM) Lyαopacities. There is tension at low opacities, however, as the models tend to associate lower IGM Lyαopacities with higher densities. Although the number of fields surveyed is still small, the low-opacity results may support a scenario in which the ionizing background in low-density regions increases more rapidly than some models suggest after becoming ionized. Elevated gas temperatures from recent reionization may also be making these regions more transparent.

     
    more » « less
  4. ABSTRACT Reionization-era galaxies tend to exhibit weak Ly α emission, likely reflecting attenuation from an increasingly neutral IGM. Recent observations have begun to reveal exceptions to this picture, with strong Ly α emission now known in four of the most massive z = 7–9 galaxies in the CANDELS fields, all of which also exhibit intense [O iii]+H β emission (EW > 800 Å). To better understand why Ly α is anomalously strong in a subset of massive z ≃ 7–9 galaxies, we have initiated an MMT/Binospec survey targeting a larger sample (N = 22) of similarly luminous (≃1–6 L$^{\ast }_{\mathrm{UV}}$) z ≃ 7 galaxies selected over very wide-area fields (∼3 deg2). We confidently (>7σ) detect Ly α in 78 per cent (7/9) of galaxies with strong [O iii]+H β emission (EW > 800 Å) as opposed to only 8 per cent (1/12) of galaxies with more moderate (EW = 200–800 Å) [O iii]+H β. We argue that the higher Ly α EWs of the strong [O iii]+H β population likely reflect enhanced ionizing photon production efficiency owing to their large sSFRs (≳30 Gyr−1). We also find evidence that Ly α transmission from massive galaxies declines less rapidly over 6 < z < 7 than in low-mass lensed systems. In particular, our data suggest no strong evolution in Ly α transmission, consistent with a picture wherein massive z ≃ 7 galaxies often reside in large ionized regions. We detect three closely separated (R = 1.7 physical Mpc) z ≃ 7 Ly α emitters in our sample, conceivably tracing a large ionized structure that is consistent with this picture. We detect tentative evidence for an overdensity in this region, implying a large ionizing photon budget in the surrounding volume. 
    more » « less
  5. ABSTRACT We compare a sample of five high-resolution, high S/N  Ly α forest spectra of bright 6 < z < ∼6.5 QSOs aimed at spectrally resolving the last remaining transmission spikes at z > 5 with those obtained from mock absorption spectra from the Sherwoodand Sherwood–Relics simulation suites of hydrodynamical simulations of the intergalactic medium (IGM). We use a profile-fitting procedure for the inverted transmitted flux, 1 − F, similar to the widely used Voigt profile fitting of the transmitted flux F at lower redshifts, to characterize the transmission spikes that probe predominately underdense regions of the IGM. We are able to reproduce the width and height distributions of the transmission spikes, both with optically thin simulations of the post-reionization Universe using a homogeneous UV background and full radiative transfer simulations of a late reionization model. We find that the width of the fitted components of the simulated transmission spikes is very sensitive to the instantaneous temperature of the reionized IGM. The internal structures of the spikes are more prominent in low temperature models of the IGM. The width distribution of the observed transmission spikes, which require high spectral resolution (≤ 8  km s−1) to be resolved, is reproduced for optically thin simulations with a temperature at mean density of T0 = (11 000 ± 1600, 10 500 ± 2100, 12 000 ± 2200) K at z = (5.4, 5.6, 5.8). This is weakly dependent on the slope of the temperature-density relation, which is favoured to be moderately steeper than isothermal. In the inhomogeneous, late reionization, full radiative transfer simulations where islands of neutral hydrogen persist to z ∼ 5.3, the width distribution of the observed transmission spikes is consistent with the range of T0 caused by spatial fluctuations in the temperature–density relation. 
    more » « less