skip to main content


Title: A Case for Task Sampling based Learning for Cluster Job Scheduling
The ability to accurately estimate job runtime properties allows a scheduler to effectively schedule jobs. State-of-the-art online cluster job schedulers use history-based learning, which uses past job execution information to estimate the runtime properties of newly arrived jobs. However, with fast-paced development in cluster technology (in both hardware and software) and changing user inputs, job runtime properties can change over time, which lead to inaccurate predictions. In this paper, we explore the potential and limitation of real-time learning of job runtime properties, by proactively sampling and scheduling a small fraction of the tasks of each job. Such a task-sampling-based approach exploits the similarity among runtime properties of the tasks of the same job and is inherently immune to changing job behavior. Our analytical and experimental analysis of 3 production traces with different skew and job distribution shows that learning in space can be substantially more accurate. Our simulation and testbed evaluation on Azure of the two learning approaches anchored in a generic job scheduler using 3 production cluster job traces shows that despite its online overhead, learning in space reduces the average Job Completion Time (JCT) by 1.28x, 1.56x, and 1.32x compared to the prior-art history-based predictor. Finally, we show how sampling-based learning can be extended to schedule DAG jobs and achieve similar speedups over the prior-art history-based predictor.  more » « less
Award ID(s):
2113893
NSF-PAR ID:
10343110
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ability to accurately estimate job runtime properties allows a scheduler to effectively schedule jobs. State-of-the-art online cluster job schedulers use history-based learning, which uses past job execution information to estimate the runtime properties of newly arrived jobs. However, with fast-paced development in cluster technology (in both hardware and software) and changing user inputs, job runtime properties can change over time, which lead to inaccurate predictions. In this paper, we explore the potential and limitation of real-time learning of job runtime properties, by proactively sampling and scheduling a small fraction of the tasks of each job. Such a task-sampling-based approach exploits the similarity among runtime properties of the tasks of the same job and is inherently immune to changing job behavior. Our analytical and experimental analysis of 3 production traces with different skew and job distribution shows that learning in space can be substantially more accurate. Our simulation and testbed evaluation on Azure of the two learning approaches anchored in a generic job scheduler using 3 production cluster job traces shows that despite its online overhead, learning in space reduces the average Job Completion Time (JCT) by 1.28×, 1.56×, and 1.32× compared to the prior-art history-based predictor. We further analyze the experimental results to give intuitive explanations to why learning in space outperforms learning in time in these experiments. Finally, we show how sampling-based learning can be extended to schedule DAG jobs and achieve similar speedups over the prior-art history-based predictor. 
    more » « less
  2. With the wide adoption of deep neural network (DNN) models for various applications, enterprises, and cloud providers have built deep learning clusters and increasingly deployed specialized accelerators, such as GPUs and TPUs, for DNN training jobs. To arbitrate cluster resources among multi-user jobs, existing schedulers fall short, either lacking fine-grained heterogeneity awareness or hardly generalizable to various scheduling policies. To fill this gap, we propose a novel design of a task-level heterogeneity-aware scheduler, Hadar, based on an online optimization framework that can express other scheduling algorithms. Hadar leverages the performance traits of DNN jobs on a heterogeneous cluster, characterizes the task-level performance heterogeneity in the optimization problem, and makes scheduling decisions across both spatial and temporal dimensions. The primal-dual framework is employed, with our design of a dual subroutine, to solve the optimization problem and guide the scheduling design. Extensive trace-driven simulations with representative DNN models have been conducted to demonstrate that Hadar improves the average job completion time (JCT) by 3× over an Apache YARN-based resource manager used in production. Moreover, Hadar outperforms Gavel[1], the state-of-the-art heterogeneity-aware scheduler, by 2.5× for the average JCT, and shortens the queuing delay by 13% and improve FTF (Finish-Time-Fairness) by 1.5%. 
    more » « less
  3. Exploiting opportunistic memory by oversubscription is an appealing approach to improving cluster utilization and throughput. In this paper, we find the efficacy of memory oversubscription depends on whether or not the oversubscribed tasks can be killed by an OutOf Memory (OOM) killer in a timely manner to avoid significant memory thrashing upon memory pressure. However, current approaches in modern cluster schedulers are actually unable to unleash the power of opportunistic memory because their user space OOM killers are unable to timely deliver a task killing signal to terminate the oversubscribed tasks. Our experiments observe that a user space OOM killer fails to do that because of lacking the memory pressure knowledge from OS while the kernel space Linux OOM killer is too conservative to relieve memory pressure. In this paper, we design a user-assisted OOM killer (namely UA killer) in kernel space, an OS augmentation for accurate thrashing detection and agile task killing. To identify a thrashing task, UA killer features a novel mechanism, constraint thrashing. Upon UA killer, we develop Charon, a cluster scheduler for oversubscription of opportunistic memory in an on-demand manner. We implement Charon upon Mercury, a state-of-the-art opportunistic cluster scheduler. Extensive experiments with a Google trace in a 26-node cluster show that Charon can: (1) achieve agile task killing, (2) improve the best-effort job throughput by 3.5X over Mercury while prioritizing the production jobs, and (3) improve the 90th job completion time of production jobs over Kubernetes opportunistic scheduler by 62%. 
    more » « less
  4. Exploiting opportunistic memory by oversubscription is an appealing approach to improving cluster utilization and throughput. In this paper, we find the efficacy of memory oversubscription depends on whether or not the oversubscribed tasks can be killed by an OutOfMemory (OOM) killer in a timely manner to avoid significant memory thrashing upon memory pressure. However, current approaches in modern cluster schedulers are actually unable to unleash the power of opportunistic memory because their user space OOM killers are unable to timely deliver a task killing signal to terminate the oversubscribed tasks. Our experiments observe that a user space OOM killer fails to do that because of lacking the memory pressure knowledge from OS while the kernel space Linux OOM killer is too conservative to relieve memory pressure. In this paper, we design a user-assisted OOM killer (namely UA killer) in kernel space, an OS augmentation for accurate thrashing detection and agile task killing. To identify a thrashing task, UA killer features a novel mechanism, constraint thrashing. Upon UA killer, we develop Charon, a cluster scheduler for oversubscription of opportunistic memory in an on-demand manner. We implement Charon upon Mercury, a state-of-the-art opportunistic cluster scheduler. Extensive experiments with a Google trace in a 26-node cluster show that Charon can: (1) achieve agile task killing, (2) improve the best-effort job throughput by 3.5X over Mercury while prioritizing the production jobs, and (3) improve the 90th job completion time of production jobs over Kubernetes opportunistic scheduler by 62%. 
    more » « less
  5. The Sia1 scheduler efficiently assigns heterogeneous deep learning (DL) cluster resources to elastic resource-adaptive jobs. Although some recent schedulers address one aspect or another (e.g., heterogeneity or resource-adaptivity), none addresses all and most scale poorly to large clusters and/or heavy workloads even without the full complexity of the combined scheduling problem. Sia introduces a new scheduling formulation that can scale to the search-space sizes and intentionally match jobs and their configurations to GPU types and counts, while adapting to changes in cluster load and job mix over time. Sia also introduces a low- profiling-overhead approach to bootstrapping (for each new job) throughput models used to evaluate possible resource assignments, and it is the first cluster scheduler to support elastic scaling of hybrid parallel jobs. Extensive evaluations show that Sia outperforms state-of- the-art schedulers. For example, even on relatively small 44- to 64-GPU clusters with a mix of three GPU types, Sia reduces average job completion time ( JCT) by 30–93%, 99th percentile JCT and makespan by 28–95%, and GPU hours used by 12– 55% for workloads derived from 3 real-world environments. Additional experiments demonstrate that Sia scales to at least 2000-GPU clusters, provides improved fairness, and is not over-sensitive to scheduler parameter settings. 
    more » « less