skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-throughput activator sequence selection for silver nanocluster beacons
Invented in 2010, NanoCluster Beacons (NCBs) (1) are an emerging class of turn-on probes that show unprecedented capabilities in single-nucleotide polymorphism (2) and DNA methylation (3) detection. As the activation colors of NCBs can be tuned by a near-by, guanine-rich activator strand, NCBs are versatile, multicolor probes suitable for multiplexed detection at low cost. Whereas a variety of NCB designs have been explored and reported, further diversification and optimization of NCBs require a full scan of the ligand composition space. However, the current methods rely on microarray and multi-well plate selection, which only screen tens to hundreds of activator sequences (4, 5). Here we take advantage of the next-generation-sequencing (NGS) platform for high-throughput, large-scale selection of activator strands. We first generated a ~104 activator sequence library on the Illumina MiSeq chip. Hybridizing this activator sequence library with a common nucleation sequence (which carried a nonfluorescent silver cluster) resulted in hundreds of MiSeq chip images with millions of bright spots (i.e. light-up polonies) of various intensities and colors. With a method termed Chip-Hybridized Associated Mapping Platform (CHAMP) (6), we were able to map these bright spots to the original DNA sequencing map, thus recovering the activator sequence behind each bright spot. After assigning an “activation score” to each “light-up polony”, we used a computational algorithm to select the best activator strands and validate these strands using the traditional in-solution preparation and fluorometer measurement method. By exploring a vast ligand composition space and observing the corresponding activation behaviors of silver clusters, we aim to elucidate the design rules of NCBs.  more » « less
Award ID(s):
1757885
PAR ID:
10343198
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Achilefu, Samuel; Raghavachari, Ramesh
Date Published:
Journal Name:
High-throughput activator sequence selection for silver nanocluster beacons DOI number
Page Range / eLocation ID:
18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract NanoCluster Beacons (NCBs) are multicolor silver nanocluster probes whose fluorescence can be activated or tuned by a proximal DNA strand called the activator. While a single‐nucleotide difference in a pair of activators can lead to drastically different activation outcomes, termed polar opposite twins (POTs), it is difficult to discover new POT‐NCBs using the conventional low‐throughput characterization approaches. Here, a high‐throughput selection method is reported that takes advantage of repurposed next‐generation‐sequencing chips to screen the activation fluorescence of ≈40 000 activator sequences. It is found that the nucleobases at positions 7–12 of the 18‐nucleotide‐long activator are critical to creating bright NCBs and positions 4–6 and 2–4 are hotspots to generate yellow–orange and red POTs, respectively. Based on these findings, a “zipper‐bag” model is proposed that can explain how these hotspots facilitate the formation of distinct silver cluster chromophores and alter their chemical yields. Combining high‐throughput screening with machine‐learning algorithms, a pipeline is established to design bright and multicolor NCBs in silico. 
    more » « less
  2. High-throughput short-read sequencing has taken on a central role in research and diagnostics. Hundreds of different assays take advantage of Illumina short-read sequencers, the predominant short-read sequencing technology available today. Although other short-read sequencing technologies exist, the ubiquity of Illumina sequencers in sequencing core facilities and the high capital costs of these technologies have limited their adoption. Among a new generation of sequencing technologies, Oxford Nanopore Technologies (ONT) holds a unique position because the ONT MinION, an error-prone long-read sequencer, is associated with little to no capital cost. Here we show that we can make short-read Illumina libraries compatible with the ONT MinION by using the rolling circle to concatemeric consensus (R2C2) method to circularize and amplify the short library molecules. This results in longer DNA molecules containing tandem repeats of the original short library molecules. This longer DNA is ideally suited for the ONT MinION, and after sequencing, the tandem repeats in the resulting raw reads can be converted into high-accuracy consensus reads with similar error rates to that of the Illumina MiSeq. We highlight this capability by producing and benchmarking RNA-seq, ChIP-seq, and regular and target-enriched Tn5 libraries. We also explore the use of this approach for rapid evaluation of sequencing library metrics by implementing a real-time analysis workflow. 
    more » « less
  3. DNA-stabilized silver nanoclusters (AgN-DNAs) are a class of nanomaterials comprised of 10-30 silver atoms held together by short synthetic DNA template strands. AgN-DNAs are promising biosensors and fluorophores due to their small sizes, natural compatibility with DNA, and bright fluorescence---the property of absorbing light and re-emitting light of a different color. The sequence of the DNA template acts as a "genome" for AgN-DNAs, tuning the size of the encapsulated silver nanocluster, and thus its fluorescence color. However, current understanding of the AgN-DNA genome is still limited. Only a minority of DNA sequences produce highly fluorescent AgN-DNAs, and the bulky DNA strands and complex DNA-silver interactions make it challenging to use first principles chemical calculations to understand and design AgN-DNAs. Thus, a major challenge for researchers studying these nanomaterials is to develop methods to employ observational data about studied AgN-DNAs to design new nanoclusters for targeted applications. In this work, we present an approach to design AgN-DNAs by employing variational autoencoders (VAEs) as generative models. Specifically, we employ an LSTM-based β-VAE architecture and regularize its latent space to correlate with AgN-DNA properties such as color and brightness. The regularization is adaptive to skewed sample distributions of available observational data along our design axes of properties. We employ our model for design of AgN-DNAs in the near-infrared (NIR) band, where relatively few AgN-DNAs have been observed to date. Wet lab experiments validate that when employed for designing new AgN-DNAs, our model significantly shifts the distribution of AgN-DNA colors towards the NIR while simultaneously achieving bright fluorescence. This work shows that VAE-based generative models are well-suited for the design of AgN-DNAs with multiple targeted properties, with significant potential to advance the promising applications of these nanomaterials for bioimaging, biosensing, and other critical technologies. 
    more » « less
  4. Abstract Sequence-specific activation by transcription factors is essential for gene regulation1,2. Key to this are activation domains, which often fall within disordered regions of transcription factors3,4and recruit co-activators to initiate transcription5. These interactions are difficult to characterize via most experimental techniques because they are typically weak and transient6,7. Consequently, we know very little about whether these interactions are promiscuous or specific, the mechanisms of binding, and how these interactions tune the strength of gene activation. To address these questions, we developed a microfluidic platform for expression and purification of hundreds of activation domains in parallel followed by direct measurement of co-activator binding affinities (STAMMPPING, for Simultaneous Trapping of Affinity Measurements via a Microfluidic Protein-Protein INteraction Generator). By applying STAMMPPING to quantify direct interactions between eight co-activators and 204 human activation domains (>1,500Kds), we provide the first quantitative map of these interactions and reveal 334 novel binding pairs. We find that the metazoan-specific co-activator P300 directly binds >100 activation domains, potentially explaining its widespread recruitment across the genome to influence transcriptional activation. Despite sharing similar molecular properties (e.g.enrichment of negative and hydrophobic residues), activation domains utilize distinct biophysical properties to recruit certain co-activator domains. Co-activator domain affinity and occupancy are well-predicted by analytical models that account for multivalency, andin vitroaffinities quantitatively predict activation in cells with an ultrasensitive response. Not only do our results demonstrate the ability to measure affinities between even weak protein-protein interactions in high throughput, but they also provide a necessary resource of over 1,500 activation domain/co-activator affinities which lays the foundation for understanding the molecular basis of transcriptional activation. 
    more » « less
  5. Abstract Noncanonical cofactor biomimetics (NCBs) such as nicotinamide mononucleotide (NMN+) provide enhanced scalability for biomanufacturing. However, engineering enzymes to accept NCBs is difficult. Here, we establish a growth selection platform to evolve enzymes to utilize NMN+-based reducing power. This is based on an orthogonal, NMN+-dependent glycolytic pathway inEscherichia coliwhich can be coupled to any reciprocal enzyme to recycle the ensuing reduced NMN+. With a throughput of >106variants per iteration, the growth selection discovers aLactobacillus pentosusNADH oxidase variant with ~10-fold increase in NMNH catalytic efficiency and enhanced activity for other NCBs. Molecular modeling and experimental validation suggest that instead of directly contacting NCBs, the mutations optimize the enzyme’s global conformational dynamics to resemble the WT with the native cofactor bound. Restoring the enzyme’s access to catalytically competent conformation states via deep navigation of protein sequence space with high-throughput evolution provides a universal route to engineer NCB-dependent enzymes. 
    more » « less