Abstract Climate change is negatively impacting ecosystems and their contributions to human well‐being, known as ecosystem services. Previous research has mainly focused on the direct effects of climate change on species and ecosystem services, leaving a gap in understanding the indirect impacts resulting from changes in species interactions within complex ecosystems. This knowledge gap is significant because the loss of a species in a food web can lead to additional species losses or “co‐extinctions,” particularly when the species most impacted by climate change are also the species that play critical roles in food web persistence or provide ecosystem services. Here, we present a framework to investigate the relationships among species vulnerability to climate change, their roles within the food web, their contributions to ecosystem services, and the overall persistence of these systems and services in the face of climate‐induced species losses. To do this, we assess the robustness of food webs and their associated ecosystem services to climate‐driven species extinctions in eight empirical rocky intertidal food webs. Across food webs, we find that highly connected species are not the most vulnerable to climate change. However, we find species that directly provide ecosystem services are more vulnerable to climate change and more connected than species that do not directly provide services, which results in ecosystem service provision collapsing before food webs. Overall, we find that food webs are more robust to climate change than the ecosystem services they provide and show that combining species roles in food webs and services with their vulnerability to climate change offer predictions about the impacts of co‐extinctions for future food web and ecosystem service persistence. However, these conclusions are limited by data availability and quality, underscoring the need for more comprehensive data collection on linking species roles in interaction networks and their vulnerabilities to climate change.
more »
« less
Species Home-Making in Ecosystems: Toward Place-Based Ecological Metrics of Belonging
Globalization has undeniably impacted the Earth’s ecosystems, but it has also influenced how we think about natural systems. Three fourths of the world’s forests are now altered by human activity, which challenges our concepts of native ecosystems. The dichotomies of pristine vs. disturbed as well as our view of native and non-native species, have blurred; allowing us to acknowledge new paradigms about how humans and nature interact. We now understand that the use of militaristic language to define the perceived role of a plant species is holding us back from the fact that novel systems (new combinations of all species) can often provide valuable ecosystem services (i.e., water, carbon, nutrients, cultural, and recreation) for creatures (including humans). In reality, ecosystems exist in a gradient from native to intensely managed – and “non-nativeness” is not always a sign of a species having negative effects. In fact, there are many contemporary examples of non-native species providing critical habitat for endangered species or preventing erosion in human-disturbed watersheds. For example, of the 8,000–10,000 non-native species introduced to Hawai‘i, less than 10% of these are self-sustaining and 90 of those pose a danger to native biota and are considered invasive. In this paper, we explore the native/non-native binary, the impacts of globalization and the political language of invasion through the lens of conservation biology and sociology with a tropical island perspective. This lens gives us the opportunity to offer a place-based approach toward the use of empirical observation of novel species interactions that may help in evaluating management strategies that support biodiversity and ecosystem services. Finally, we offer a first attempt at conceptualizing a site-specific approach to develop “metrics of belonging” within an ecosystem.
more »
« less
- PAR ID:
- 10343226
- Date Published:
- Journal Name:
- Frontiers in Ecology and Evolution
- Volume:
- 9
- ISSN:
- 2296-701X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Whether cities are more or less diverse than surrounding environments, and the extent to which non‐native species in cities impact regional species pools, remain two fundamental yet unanswered questions in urban ecology. Here we offer a unifying framework for understanding the mechanisms that generate biodiversity patterns across taxonomic groups and spatial scales in urban systems. One commonality between existing frameworks is the collective recognition that species co‐occurrence locally is not simply a function of natural colonization and extinction processes. Instead, it is largely a consequence of human actions that are governed by a myriad of social processes occurring across groups, institutions, and stakeholders. Rather than challenging these frameworks, we expand upon them to explicitly consider how human and non‐human mechanisms interact to control urban biodiversity and influence species composition over space and time. We present a comprehensive theory of the processes that drive biodiversity within cities, between cities and surrounding non‐urbanized areas and across cities, using the general perspective of metacommunity ecology. Armed with this approach, we embrace the fact that humans substantially influence β‐diversity by creating a variety of different habitats in urban areas, and by influencing dispersal processes and rates, and suggest ways how these influences can be accommodated to existing metacommunity paradigms. Since patterns in urban biodiversity have been extensively described at the local or regional scale, we argue that the basic premises of the theory can be validated by studying the β‐diversity across spatial scales within and across urban areas. By explicitly integrating the myriad of processes that drive native and non‐native urban species co‐occurrence, the proposed theory not only helps reconcile contrasting views on whether urban ecosystems are biodiversity hotspots or biodiversity sinks, but also provides a mechanistic understanding to better predict when and why alternative biodiversity patterns might emerge.more » « less
-
Abstract Native biodiversity decline and non-native species spread are major features of the Anthropocene. Both processes can drive biotic homogenization by reducing trait and phylogenetic differences in species assemblages between regions, thus diminishing the regional distinctiveness of biotas and likely have negative impacts on key ecosystem functions. However, a global assessment of this phenomenon is lacking. Here, using a dataset of >200,000 plant species, we demonstrate widespread and temporal decreases in species and phylogenetic turnover across grain sizes and spatial extents. The extent of homogenization within major biomes is pronounced and is overwhelmingly explained by non-native species naturalizations. Asia and North America are major sources of non-native species; however, the species they export tend to be phylogenetically close to recipient floras. Australia, the Pacific and Europe, in contrast, contribute fewer species to the global pool of non-natives, but represent a disproportionate amount of phylogenetic diversity. The timeline of most naturalisations coincides with widespread human migration within the last ~500 years, and demonstrates the profound influence humans exert on regional biotas beyond changes in species richness.more » « less
-
The origins of evolutionary games are rooted in both economics and animal behaviour, but economics has, until recently, focused primarily on humans. Although historically, specific games were used in targeted circumstances with non-human species (i.e. the Prisoner's Dilemma), experimental economics has been increasingly recognized as a valuable method for directly comparing both the outcomes of economic decisions and their underlying mechanisms across species, particularly in comparison with humans, thanks to the structured procedures that allow for them to be instantiated across a variety of animals. So far, results in non-human primates suggest that even when outcomes are shared, underlying proximate mechanisms can vary substantially. Intriguingly, in some contexts non-human primates more easily find a Nash equilibrium than do humans, possibly owing to their greater willingness to explore the parameter space, but humans excel at more complex outcomes, such as alternating between two Nash equilibria, even when deprived of language or instruction, suggesting potential mechanisms that humans have evolved to allow us to solve complex social problems. We consider what these results suggest about the evolution of economic decision-making and suggest future directions, in particular the need to expand taxonomic diversity, to expand this promising approach. This article is part of the theme issue ‘Half a century of evolutionary games: a synthesis of theory, application and future directions'.more » « less
-
Defaunation and species introductions alter long-term functional trait diversity in insular reptilesBiodiversity loss poses a major threat to ecosystem function, which has already been severely impacted by global late-Quaternary defaunation. The loss of mammalian megafauna from many insular systems has rendered reptiles into key modulators of many ecosystem services, such as seed dispersal and pollination. How late-Quaternary extinction events impacted reptile functional diversity remains unclear but can provide critical guidance on traits that render reptiles vulnerable to extinction, as well as anthropogenic, environmental, and evolutionary histories that may promote stability and resilience. This study reconstructs the trajectory of functional diversity change in the Caribbean reptile fauna, a speciose biota distributed over a diverse set of islands with heterogeneous histories of human habitation and exploitation. Human-induced Quaternary extinctions have completely removed key functional entities (FEs)—groupings of species with similar traits that are expected to provide similar ecosystem services—from the region, but functional redundancy on large islands served as a buffer to major functional diversity loss. Small islands, on the other hand, lose up to 67% of their native FEs with only a few exceptions, underscoring the importance of a place’s anthropogenic history in shaping present-day biodiversity. While functional redundancy has shielded ecosystems from significant functional diversity loss in the past, it is being eroded and not replenished by species introductions, leaving many native FEs and the communities that they support vulnerable to extinction and functional collapse. This research provides critical data on long-term functional diversity loss for a taxonomic group whose contributions to ecosystem function are understudied and undervalued.more » « less
An official website of the United States government

