skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Widespread homogenization of plant communities in the Anthropocene

Native biodiversity decline and non-native species spread are major features of the Anthropocene. Both processes can drive biotic homogenization by reducing trait and phylogenetic differences in species assemblages between regions, thus diminishing the regional distinctiveness of biotas and likely have negative impacts on key ecosystem functions. However, a global assessment of this phenomenon is lacking. Here, using a dataset of >200,000 plant species, we demonstrate widespread and temporal decreases in species and phylogenetic turnover across grain sizes and spatial extents. The extent of homogenization within major biomes is pronounced and is overwhelmingly explained by non-native species naturalizations. Asia and North America are major sources of non-native species; however, the species they export tend to be phylogenetically close to recipient floras. Australia, the Pacific and Europe, in contrast, contribute fewer species to the global pool of non-natives, but represent a disproportionate amount of phylogenetic diversity. The timeline of most naturalisations coincides with widespread human migration within the last ~500 years, and demonstrates the profound influence humans exert on regional biotas beyond changes in species richness.

more » « less
Award ID(s):
2113424 2031928 1802209 2101884 1754584
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cultivation and spread of non‐native plant species may result in either phylogenetic homogenization (increasing similarity) or differentiation (decreasing similarity) of urban floras. However, it is unknown how non‐native species influence homogenization of cultivated versus spontaneously occurring species in cities, and which traits are associated with species that promote homogenization versus differentiation. In this study, we compared homogenization effects of cultivated and spontaneous non‐native species in yard floras across and within seven widely distributed U.S. cities. Additionally, we explored which traits explained their particular contribution to homogenization. We recorded plant presence/absence in 178 private yards distributed among seven metropolitan statistical areas in the United States. We compared phylogenetic homogenization effects of non‐native species within both the cultivated and spontaneous species pools using phylogenetic dissimilarities and the homogenization index. Then, we expressed contributions of non‐native species to the homogenization of each pool as a function of two different sets of plant functional traits using phylogenetic generalized least square (PGLS) models across and within cities. Across cities, spontaneous non‐native species homogenized, and cultivated non‐native species differentiated, yard floras. Within the spontaneous pool, short, small‐seeded non‐native plants and non‐native grasses significantly homogenized yard floras. Within the cultivated pool, species contribution to homogenization was best predicted by plant height, presence of showy flowers, and growth form, with non‐native grasses significantly homogenizing cultivated yard floras. Within cities, non‐native species—whether they were cultivated or spontaneous—consistently homogenized yard floras of the three northern cities and differentiated yard floras of three of the four southern cities, suggesting that homogenization processes are context‐ and scale‐dependent. Likewise, traits explaining homogenization differed substantially among cities. The inconsistent patterns among cities in the plant traits that promoted homogenization of both cultivated and spontaneous species suggest that local environmental and anthropogenic conditions of individual cities imposed strong constraints on trait selection. Linking plant functional traits that promote homogenization with residents’ preferences for vegetation may further enhance understanding of how yard plant communities assemble at regional and local scales.

    more » « less
  2. Abstract

    Islands make up a large proportion of Earth's biodiversity, yet are also some of the most sensitive systems to environmental perturbation. Biogeographic theory predicts that geologic age, area, and isolation typically drive islands' diversity patterns, and thus potentially impact non‐native spread and community homogenization across island systems. One limitation in testing such predictions has been the difficulty of performing comprehensive inventories of island biotas and distinguishing native from introduced taxa. Here, we use DNA metabarcoding and statistical modelling as a high throughput method to survey community‐wide arthropod richness, the proportion of native and non‐native species, and the incursion of non‐natives into primary habitats on three archipelagos in the Pacific – the Ryukyus, the Marianas and Hawaii – which vary in age, isolation and area. Diversity patterns largely match expectations based on island biogeography theory, with the oldest and most geographically connected archipelago, the Ryukyus, showing the highest taxonomic richness and lowest proportion of introduced species. Moreover, we find evidence that forest habitats are more resilient to incursions of non‐natives in the Ryukyus than in the less taxonomically rich archipelagos. Surprisingly, we do not find evidence for biotic homogenization across these three archipelagos: the assemblage of non‐native species on each island is highly distinct. Our study demonstrates the potential of DNA metabarcoding to facilitate rapid estimation of biogeographic patterns, the spread of non‐native species, and the resilience of ecosystems.

    more » « less
  3. BACKGROUND The Republic of Madagascar is home to a unique assemblage of taxa and a diverse set of ecosystems. These high levels of diversity have arisen over millions of years through complex processes of speciation and extinction. Understanding this extraordinary diversity is crucial for highlighting its global importance and guiding urgent conservation efforts. However, despite the detailed knowledge that exists on some taxonomic groups, there are large knowledge gaps that remain to be filled. ADVANCES Our comprehensive analysis of major taxonomic groups in Madagascar summarizes information on the origin and evolution of terrestrial and freshwater biota, current species richness and endemism, and the utilization of this biodiversity by humans. The depth and breadth of Madagascar’s biodiversity—the product of millions of years of evolution in relative isolation —is still being uncovered. We report a recent acceleration in the scientific description of species but many remain relatively unknown, particularly fungi and most invertebrates. DIGITIZATION Digitization efforts are already increasing the resolution of species richness patterns and we highlight the crucial role of field- and collections-based research for advancing biodiversity knowledge in Madagascar. Phylogenetic diversity patterns mirror that of species richness and endemism in most of the analyzed groups. Among the new data presented, our update on plant numbers estimates 11,516 described vascular plant species native to Madagascar, of which 82% are endemic, in addition to 1215 bryophyte species, of which 28% are endemic. Humid forests are highlighted as centers of diversity because of their role as refugia and centers of recent and rapid radiations, but the distinct endemism of other areas such as the grassland-woodland mosaic of the Central Highlands and the spiny forest of the southwest is also important despite lower species richness. Endemism in Malagasy fungi remains poorly known given the lack of data on the total diversity and global distribution of species. However, our analysis has shown that ~75% of the fungal species detected by environmental sequencing have not been reported as occurring outside of Madagascar. Among the 1314 species of native terrestrial and freshwater vertebrates, levels of endemism are extremely high (90% overall)—all native nonflying terrestrial mammals and native amphibians are found nowhere else on Earth; further, 56% of the island’s birds, 81% of freshwater fishes, 95% of mammals, and 98% of reptile species are endemic. Little is known about endemism in insects, but data from the few well-studied groups on the island suggest that it is similarly high. The uses of Malagasy species are many, with much potential for the uncovering of useful traits for food, medicine, and climate mitigation. OUTLOOK Considerable work remains to be done to fully characterize Madagascar’s biodiversity and evolutionary history. The multitudes of known and potential uses of Malagasy species reported here, in conjunction with the inherent value of this unique and biodiverse region, reinforce the importance of conserving this unique biota in the face of major threats such as habitat loss and overexploitation. The gathering and analysis of data on Madagascar’s remarkable biota must continue and accelerate if we are to safeguard this unique and highly threatened subset of Earth’s biodiversity. Emergence and composition of Madagascar’s extraordinary biodiversity. Madagascar’s biota is the result of over 160 million years of evolution, mostly in geographic isolation, combined with sporadic long distance immigration events and local extinctions. (Left) We show the age of the oldest endemic Malagasy clade for major groups (from bottom to top): arthropods, bony fishes, reptiles, flatworms, birds, amphibians, flowering plants, mammals, non-flowering vascular plants, and mollusks). Humans arrived recently, some 10,000 to 2000 years (top right) and have directly or indirectly caused multiple extinctions (including hippopotamus, elephant birds, giant tortoises, and giant lemurs) and introduced many new species (such as dogs, zebu, rats, African bushpigs, goats, sheep, rice). Endemism is extremely high and unevenly distributed across the island (the heat map depicts Malagasy palm diversity, a group characteristic of the diverse humid forest). Human use of biodiversity is widespread, including 1916 plant species with reported uses. The scientific description of Malagasy biodiversity has accelerated greatly in recent years (bottom right), yet the diversity and evolution of many groups remain practically unknown, and many discoveries await. 
    more » « less
  4. Abstract

    Nylanderia(Emery) is one of the world's most diverse ant genera, with 123 described species worldwide and hundreds more undescribed. Fifteen globetrotting or invasive species have widespread distributions and are often encountered outside their native ranges. A molecular approach to understanding the evolutionary history and to revision ofNylanderiataxonomy is needed because historical efforts based on morphology have proven insufficient to define major lineages and delimit species boundaries, especially where adventive species are concerned. To address these problems, we generated the first genus‐wide genomic dataset ofNylanderiausing ultraconserved elements (UCEs) to resolve the phylogeny of major lineages, determine the age and origin of the genus, and describe global biogeographical patterns. Sampling from seven biogeographical regions revealed a Southeast Asian origin ofNylanderiain the mid‐Eocene and four distinct biogeographical clades in the Nearctic, the Neotropics, the Afrotropics/Malagasy region, and Australasia. The Nearctic and Neotropical clades are distantly related, indicating two separate dispersal events to the Americas between the late Oligocene and early Miocene. We also addressed the problem of misidentification that has characterized species‐level taxonomy inNylanderiaas a result of limited morphological variation in the worker caste by evaluating the integrity of species boundaries in six of the most widespreadNylanderiaspecies. We sampled across ranges of species in theN. bourbonicacomplex (N. bourbonica(Forel) + N. vaga(Forel)), theN. fulvacomplex (N. fulva(Mayr) + N. pubens(Forel)), and theN. guatemalensiscomplex (N. guatemalensis(Forel) + N. steinheili(Forel)) to clarify their phylogenetic placement. Deep splits within these complexes suggest that some species names – specificallyN. bourbonicaandN. guatemalensis– each are applied to multiple cryptic species. In exhaustively samplingNylanderiadiversity in the West Indies, a ‘hot spot’ for invasive taxa, we found five adventive species among 22 in the region; many remain morphologically indistinguishable from one another, despite being distantly related. We stress that overcoming the taxonomic impediment through the use of molecular phylogeny and revisionary study is essential for conservation and invasive species management.

    more » « less
  5. Abstract Aim

    Angiosperm epiphytes have long been reported to have larger geographic ranges than terrestrial species, despite evidence of their outstanding diversity and endemism. This apparent contradiction calls for further investigation of epiphytes' poorly understood range size patterns. Here, we address the question of whether epiphytes have larger geographic ranges and different vulnerability to extinction than terrestrial species.


    The Atlantic Forest of Brazil, a global centre of tropical epiphyte diversity with relatively well‐known flora, where we can estimate the geographic ranges of a large number of species with reasonable confidence.

    Time period

    Occurrence records from the 17th century to the year 2021.

    Major taxa studied

    Flowering plants (angiosperms).


    We downloaded, processed and cleaned all occurrence records for the angiosperm species native to the Atlantic Forest of Brazil available in the speciesLink network and the Global Biodiversity Information Facility. We estimated the extent of occurrence and area of occupancy of 12,679 native flowering plants, including 1251 epiphytic species. We compared the geographic ranges of epiphytes and other life forms at broad (e.g. Angiosperms, Monocots) and more restricted taxonomic scales (e.g. individual families), assuming species are independent entities and also when accounting for species phylogenetic dependence.


    We found that epiphytes have among the smallest geographic ranges of flowering plants. We found no consistent evidence that epiphytism leads to differences in geographic ranges between close relatives. However, both epiphytes and non‐epiphytes in epiphyte‐rich lineages have small ranges and likely a high vulnerability to extinction.

    Main Conclusions

    Our findings contrast with the long‐held hypothesis that epiphytes have larger geographic ranges than terrestrial species. Epiphytes and their close relatives share many diversification mechanisms and ecological adaptations (‘epiphyte‐like traits’), which probably explain why both sets of species have small range sizes and high vulnerability to extinction.

    more » « less