Wisdom of the crowd (Surowiecki, 2005a) disclosed a striking fact that the majority voting answer from a crowd is usually more accurate than a few individual experts. The same story is observed in machine learning - ensemble methods (Dietterich, 2000) leverage this idea to exploit multiple machine learning algorithms in various settings e.g., supervised learning and semi-supervised learning to achieve better performance by aggregating the predictions of different algorithms than that obtained from any constituent algorithm alone. Nonetheless, the existing aggregating rule would fail when the majority answer of all the constituent algorithms is more likely to be wrong. In this paper, we extend the idea proposed in Bayesian Truth Serum (Prelec, 2004) that “a surprisingly more popular answer is more likely to be the true answer instead of the majority one” to supervised classification further improved by ensemble final predictions method and semi-supervised classification (e.g., MixMatch (Berthelot et al., 2019)) enhanced by ensemble data augmentations method. The challenge for us is to define or detect when an answer should be considered as being “surprising”. We present two machine learning aided methods which can reveal the truth when the minority instead of majority has the true answer on both settings of supervised and semi-supervised classification problems. We name our proposed method the Machine Truth Serum. Our experiments on a set of classification tasks (image, text, etc.) show that the classification performance can be further improved by applying Machine Truth Serum in the ensemble final predictions step (supervised) and in the ensemble data augmentations step (semi-supervised).
more »
« less
Teaching Interactively to Learn Emotions in Natural Language
Motivated by prior literature, we provide a proof of concept simulation study for an understudied interactive machine learning method, machine teaching (MT), for the text-based emotion prediction task. We compare this method experimentally against a more well-studied technique, active learning (AL). Results show the strengths of both approaches over more resource-intensive offline supervised learning. Additionally, applying AL and MT to fine-tune a pre-trained model offers further efficiency gain. We end by recommending research directions which aim to empower users in the learning process.
more »
« less
- Award ID(s):
- 2125362
- PAR ID:
- 10343264
- Date Published:
- Journal Name:
- me: Proceedings of the Second Workshop on Bridging Human-Computer Interaction and Natural Language Processing
- Page Range / eLocation ID:
- 40 to 46
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Quantification of microtubule (MT) dynamic instability (DI) is essential to mechanistic dissection of MT assembly and the activities of MT binding proteins. Typical methods for quantifying MT dynamics assume that MT behavior consists of growth and shortening phases, with instantaneous transitions (rescues and catastrophes) in between. However, examination of DI data at high temporal and spatial resolution reveals the presence of ambiguous behaviors that cannot easily fit into these categories. Failure to objectively recognize and quantify these behaviors could reduce the reproducibility of DI data and impact attempts to dissect mechanisms. To address these problems, we recently developed STADIA (Statistical Tool for Automated Dynamic Instability Analysis), a MT analysis software package that uses length-history data as input and is (presently) implemented in MATLAB. STADIA uses machine learning methods to objectively analyze and quantify macro-level DI behaviors exhibited by MTs, including variable rates of growth and shortening and a newly quantified DI phase: stutter. Here we overview the process of using STADIA to quantify MT dynamics and provide a set of concrete protocols for using STADIA to process and analyze MT length history data.more » « less
-
Africa has over 2000 indigenous languages but they are under-represented in NLP research due to lack of datasets. In recent years, there have been progress in developing labelled corpora for African languages. However, they are often available in a single domain and may not generalize to other domains. In this paper, we focus on the task of sentiment classification for cross-domain adaptation. We create a new dataset, NollySenti—based on the Nollywood movie reviews for five languages widely spoken in Nigeria (English, Hausa, Igbo, Nigerian-Pidgin, and Yorùbá). We provide an extensive empirical evaluation using classical machine learning methods and pre-trained language models. Leveraging transfer learning, we compare the performance of cross-domain adaptation from Twitter domain, and cross-lingual adaptation from English language. Our evaluation shows that transfer from English in the same target domain leads to more than 5% improvement in accuracy compared to transfer from Twitter in the same language. To further mitigate the domain difference, we leverage machine translation (MT) from English to other Nigerian languages, which leads to a further improvement of 7% over cross-lingual evaluation. While MT to low-resource languages are often of low quality, through human evaluation, we show that most of the translated sentences preserve the sentiment of the original English reviews.more » « less
-
Stochastic gradient descent (SGD) is the optimization algorithm of choice in many machine learning applications such as regularized empirical risk minimization and training deep neural networks. The classical analysis of convergence of SGD is carried out under the assumption that the norm of the stochastic gradient is uniformly bounded. While this might hold for some loss functions, it is always violated for cases where the objective function is strongly convex. In (Bottou et al.,2016) a new analysis of convergence of SGD is performed under the assumption that stochastic gradients are bounded with respect to the true gradient norm. Here we show that for stochastic problems arising in machine learning such bound always holds. Moreover, we propose an alternative convergence analysis of SGD with diminishing learning rate regime, which is results in more relaxed conditions that those in (Bottou et al.,2016). We then move on the asynchronous parallel setting, and prove convergence of the Hogwild! algorithm in the same regime, obtaining the first convergence results for this method in the case of diminished learning rate.more » « less
-
When deep neural network (DNN) is extensively utilized for edge AI (Artificial Intelligence), for example, the Internet of things (IoT) and autonomous vehicles, it makes CMOS (Complementary Metal Oxide Semiconductor)-based conventional computers suffer from overly large computing loads. Memristor-based devices are emerging as an option to conduct computing in memory for DNNs to make them faster, much more energy efficient, and accurate. Despite having excellent properties, the memristor-based DNNs are yet to be commercially available because of Stuck-At-Fault (SAF) defects. A Mapping Transformation (MT) method is proposed in this paper to mitigate Stuck-at-Fault (SAF) defects from memristor-based DNNs. First, the weight distribution for the VGG8 model with the CIFAR10 dataset is presented and analyzed. Then, the MT method is used for recovering inference accuracies at 0.1% to 50% SAFs with two typical cases, SA1 (Stuck-At-One): SA0 (Stuck-At-Zero) = 5:1 and 1:5, respectively. The experiment results show that the MT method can recover DNNs to their original inference accuracies (90%) when the ratio of SAFs is smaller than 2.5%. Moreover, even when the SAF is in the extreme condition of 50%, it is still highly efficient to recover the inference accuracy to 80% and 21%. What is more, the MT method acts as a regulator to avoid energy and latency overhead generated by SAFs. Finally, the immunity of the MT Method against non-linearity is investigated, and we conclude that the MT method can benefit accuracy, energy, and latency even with high non-linearity LTP = 4 and LTD = −4.more » « less
An official website of the United States government

